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Abstract. We develop uniform approximations for the trace formula for non-integrable systems
in whichSU (2) symmetry is broken by a nonlinear term of the Hamiltonian. As specific examples,
we investigate H́enon–Heiles type potentials. Our formalism can also be applied to the breaking of
SO(3) symmetry in a three-dimensional cavity with axially-symmetric quadrupole deformation.

1. Introduction

Systems with mixed classical dynamics have so far offered the most difficult problems in the
attempts of a semiclassical quantization in terms of periodic orbits [1–4]. These problems
have mainly three origins: (1) the existence of continuous symmetries that make (some of)
the periodic orbits non-isolated, (2) bifurcations of stable orbits, and (3) the proximity of a
higher symmetry that is reached by letting a continuous parameter go to zero. In all three
cases, the original trace formula of Gutzwiller [1] cannot be used because the stationary-
phase integration transverse to the periodic orbits used in its derivation, is not justified and
leads to divergences. By now, the problems connected to (1) and (2) are essentially solved.
Besides fully integrable systems [2,3], non-integrable systems with various kinds of continuous
symmetries can also be treated by properly extended versions of the Gutzwiller theory [5, 6].
Considerable progress has also recently been made in the treatment of bifurcations, after earlier
indications of how to go beyond the simplest saddle-point integration [2, 3, 7]. Sieber and
Schomerus [8,9] have systematically developed uniform approximations to the most common
types of bifurcations, expanding the action integrals in the neighbourhood of a bifurcation point
into normal forms in phase space [10]. The resulting trace formulae interpolate continuously
between the appropriate Gutzwiller limits that are sufficiently far away from the bifurcation
points, where the stationary-phase integration can be applied.

In this paper, we shall be concerned with the third type of problem which arises from
the breaking of a given symmetry through a continuous parameter in the Hamiltonian. Let
us start from an integrable system described by a HamiltonianH0 which possesses a certain
continuous symmetry. As a consequence of this symmetry, the periodic orbits in the classical
system occur in degenerate families living onN -tori in phase space, whereN is the number
of degrees of freedom of the integrable system. We now perturb the system by adding to it a
term that breaks the symmetry:

H = H0 + εH1. (1)
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Hereε is a continuous dimensionless parameter which in the following we may also call a
‘deformation’. Due to the symmetry breaking, some (or all) of the rational tori containing the
periodic orbit families are broken up into orbits that have a lesser degree of degeneracy than
those ofH0, or are completely isolated. System (1) will in general exhibit mixed classical
dynamics, and ifH1 breaks all continuous symmetries ofH0, it will become chaotic for large
values ofε and for large energies, where the standard Gutzwiller trace formula can be applied.
However, for smallε the amplitudes in this formula become very large; they actually diverge
for ε → 0. This is due to the fact that although the rational tori are broken up forε > 0,
the periodic orbits are still not sufficiently isolated as long as their perturbed actions differ by
less than ¯h, and consequently the stationary-phase integration transverse to the orbits fails as
mentioned above. One then has to find more accurate ways of performing the trace integration
over the semiclassical Green’s function; in principle, closed non-periodic orbits will thereby
also contribute significantly to the result [11].

In the limit of small perturbations,ε � 1, classical perturbation theory may be used
to derive trace formulae with finite amplitudes that yield the correct limit forε → 0.
Generalizing earlier attempts [12,13], Creagh [14] has recently developed a scheme to derive
perturbative trace formulae for the breaking of arbitrary continuous symmetries, including e.g.
SO(3) (spherically symmetric potentials) orSU(N) (harmonic oscillators inN dimensions).
Applications of this approach have been presented in [15–18]. The results successfully describe
the transitions from higher to lower (or no) symmetry for small or moderate deformationsε, but
they eventually fail when the perturbative regime is exceeded. In the limit of large perturbation,
ε � 1, one would like to recover the Gutzwiller trace formula [1] for isolated orbits, or its
corresponding extension [5, 6] if some continuous symmetries are left. A closed form of an
approximation that yields this limit as well as the correct trace formula of the integrable system
H0 for ε → 0 is called a uniform approximation, in analogy to the uniform approximations
that interpolate continuously across bifurcations.

Tomsovicet al [19] have recently derived a uniform approximation for the breaking of
U (1) symmetry in a two-dimensional system. Their result is quite general and applies to all
systems where the rational tori are broken into pairs of stable and unstable isolated orbits. No
analogous result is known to us for the breaking of a higher symmetry in any dimension. We
will discuss the approach of [19] briefly in section 2 and re-derive it from the perturbative limit
in a heuristic way that is suitable for an extension to higher symmetries ofH0.

In this paper, we derive uniform approximations to perturbed harmonic oscillators in two
dimensions, whereH0 hasSU (2) symmetry (section 3). We furthermore apply one of the
results to a three-dimensional cavity with small axially-symmetric quadrupole deformations,
where one starts fromSO(3) symmetry (section 4).

Our aim is not the full quantization of these systems, but the description of their gross-shell
properties which are determined by the shortest orbits [4,5]. The use of periodic orbit theory
to describe shell effects in many-fermion systems in terms of a few short orbits has found nice
applications, e.g., in nuclei, for ground state deformations [20] and the mass asymmetry of
fission [21]; in metal clusters, for supershells [22] and (using the perturbative approach [14])
their modifications due to deformations [15,16] and magnetic fields [17]; and in semiconductor
quantum dots, for magnetization [13,23] and conductance fluctuations [16,24].

2. Recapitulation ofU (1) breaking

We start by recapitulating the work of Tomsovicet al [19] for the breaking ofU (1) symmetry
in a two-dimensional system. We shall re-derive their result in the simplified version given
by Sieber [9], using a heuristic way which will be generalized in the later sections to systems
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with higher symmetries.
We restrict ourselves to the most frequently occurring case, i.e. that of a periodic orbit

family on a 2-torus broken into a non-degenerate pair of stable and unstable isolated orbits.
In the two-dimensional trace integral, one integration is performed exactly along the orbits as
usual. The space variableq transverse to the orbit can always be mapped onto a variableφ

which is cyclic in [0, 2π) and as a function of which the action shift is proportional to cos(φ)

(‘pendulum mapping’ in [19]). Hence, the contribution of an orbit family to the trace formula
is

δg = Re

{
ei80

1

2π

∫ 2π

0
A(φ)J (φ)e

i
h̄
δS cos(φ) dφ

}
. (2)

HereA(φ) is the Gutzwiller amplitude function in the trace formula for the perturbed system,
J (φ) = ∂q/∂φ is the Jacobian due to the variable mapping, and80 = S0/h̄ − σ0π/2 is
the overall phase (including the actionS0 and the Maslov indexσ0) of the level density in
the unperturbed system withU (1) symmetry. The quantityδS cos(φ) in the exponent is the
action shift caused by the symmetry breaking term in the Hamiltonian. For a first inspection,
perturbation theory might give a hint as to the value of the constantδS (which depends on the
energy and on the parameters in the symmetry breaking term, such as deformation, nonlinearity,
etc.). Hereby one may have to go beyond the first order of the perturbation expansion. Recent
work on H́enon–Heiles systems [18] gives us a hint that going to the lowest order at whichδS

becomes non-zero—however high it may be—can be combined with keeping the unperturbed
amplitudeA0. PuttingA(φ)J (φ) = A0, which one may do in the small-perturbation limit,
theφ integral in (2) can be done analytically, and one obtains

δg = A0J0(δS/h̄) cos(80) (3)

whereJ0(x) is a standard cylindrical Bessel function. WhenδS is zero, we have the trace
formula in the symmetric limit (for one orbit family)

δg0 = A0 cos(80) = A0 cos(S0/h̄− σ0π/2). (4)

For large deviations from theU (1) symmetry, i.e. forδS � h̄, we can use the asymptotic
expansion ofJ0(x) ∼

√
(2/π |x|) cos(x − π/4) to find

δg ∼ A0

√
h̄/2π |δS|[cos(80 + δS/h̄− π/4) + cos(80 − δS/h̄ + π/4)]. (5)

This corresponds to the two isolated orbits with the action shifts±δS and the corresponding
corrections to the Maslov indices. Note that the two terms above arise from a saddle-point
approximation to the integral in (2) at the stationary pointsφ0 = 0 andφ0 = π , respectively.
The action shifts and amplitudes in (5) will in general be correct only in the small-perturbation
limit.

We want to find a uniform approximation forδS � h̄ that reaches the correct Gutzwiller
trace formula for the pair of isolated orbits

δgG = Au cos(Su/h̄− σuπ/2) +As cos(Ss/h̄− σsπ/2) (6)

where the indicess andu refer to the stable and unstable orbits, respectively. We first define
the following quantities:

Ā = 1
2(Au +As) 1A = 1

2(Au − As) S̄ = 1
2(Su + Ss) 1S = 1

2(Su − Ss) (7)

8̄ = S̄/h̄− σ̄ σ̄ = 1
2(σu + σs) = σ0. (8)

We now make the following ansatz for the uniform approximation, which consists of expanding
the productA(φ)J (φ) up to two terms with suitably chosen coefficients:

δgu =
√

2π |1S|/h̄Re

{
ei8̄ 1

2π

∫ 2π

0
(Ā +1A cosφ)e

i
h̄
1S cos(φ) dφ

}
. (9)
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For small perturbations,1S ∼ δS, and therefore (9) will by construction lead to the correct
symmetric limit (4), since the divergence of the Gutzwiller amplitudes in this limit is given
by the first factor in equation (5). On the other hand, the coefficients in parentheses under the
integral in (9) have been chosen such that in the asymptotic limit|1S| � h̄, the stationary-
phase evaluation will lead to the amplitudesĀ ± 1A which are precisely the Gutzwiller
amplitudesAu andAs , respectively, and thus give the form (6).

The integration in (9) can be done analytically, using

1

2π

∫ 2π

0
dφ cosφeix cosφ = iJ1(x) (10)

and leads to the Tomsovic–Grinberg–Ullmo (TGU) uniform approximation [19], in the compact
form given by Sieber [9], for the contribution of a pair of symmetry-broken isolated orbits to
the trace formula:

δgu =
√

2π |1S|/h̄{ĀJ0(1S/h̄) cos(8̄)−1AJ1(1S/h̄) sin(8̄)}. (11)

Note that this formula holds for all generic non-integrable systems in two dimensions that
arise from an integrable system withU (1) symmetry through a symmetry-breaking term in
the Hamiltonian that is governed by a continuous parameter. Particular examples are two-
dimensional billiards obtained by deforming the circular billiard. The nature of the deformation
parameter generally plays no role. The only assumption made is that the original orbit families
(i.e. polygons in the case of the circular billiard) are broken into pairs of stable and unstable
isolated orbits. The modification that becomes necessary when extra degeneracies due to
discrete symmetries are present is trivial and will be dealt with explicitly in the examples
discussed below. The breaking into orbit pairs is the most frequent situation. Exceptions
occur, e.g., in billiards with octupole or hexadecapole deformations, where the boundary in
polar coordinates is given byr(θ) = R[1 + ε`P`(cosθ)] with ` = 3 or 4. There the diameter
orbit family breaks up into more than two isolated librating orbits (not counting discrete
degeneracies) [25]. These have to be treated with different (and more complicated) uniform
approximations.

We also note that the deformation away from the integrable case should be small enough
that no bifurcation of the stable isolated orbits has taken place or is about to arise. Near the
bifurcation points, the known uniform approximations apply [7–9] which we shall not discuss
here.

3. Uniform approximations for SU (2) breaking

No uniform approximation has, to our knowledge, been derived so far for systems with higher
thanU (1) symmetry. In the following, we shall do so for two systems obtained by breaking
theSU (2) symmetry of the two-dimensional harmonic oscillator. We shall follow the heuristic
way of deriving the uniform approximation described in the previous section, starting from
the perturbative limit which is treated here using the approach of Creagh [14].

For isotropic and anisotropic harmonic oscillators in any dimension, analytical trace
formulae are known which converge to the exact quantum-mechanical sum of delta functions
[4,26]. For the two-dimensional isotropic case, the oscillating part of the level density is

δg0 = A0

∞∑
r=1

cos

(
rS0

h̄

)
A0 = 2E

(h̄ω)2
S0 = 2πE

ω
. (12)

(Note that the smooth Thomas–Fermi part is given byA0/2.) As pointed out in [14], the
continuous degeneracy of the classical periodic orbits in this system can be described by
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integration of the surface elementd� = sinβ dβ dγ of a unit sphere:

1

4π

∫ 2π

0
dγ
∫ π

0
sinβ dβ = 1. (13)

As a result of theSU (2) symmetry, the actionS0 is independent of the anglesβ andγ . In the
presence of a small perturbation, the periodic orbits will be distorted, resulting in an action
shift δS that in general will depend onβ andγ . Explicit ways of calculatingδS(β, γ ) starting
from a Hamiltonian of the form (1) are given in [14]. For small values of the perturbation
parameterε, the main effects governing the level density will come from the action shift in
the phase of the trace formula, whereas the unperturbed amplitudeA0 can be retained. The
perturbative trace formula for symmetry breaking then reads as

δgpert = A0Re

{ rm∑
r=1

M(rx)eirS0/h̄

}
. (14)

Here the modulation factorM(x) (which in general is complex) is given by the average of the
phase shift, taken over the originally degenerate periodic orbit family,

M(x) = 1

4π

∫ 2π

0
dγ
∫ π

0
sinβ dβ eiδS(β,γ )/h̄ (15)

andr is the repetition number. The dimensionless quantityx is proportional toε and inversely
proportional toh̄, and depends on some power of the energyE. Forε → 0 and hencex → 0,
we haveδS → 0 so thatM → 1, and the unperturbed trace formula (12) is recovered.
The repetition numberr in (14) cannot be summed up to arbitrarily high values, since the
argumentrx must remain of order unity or smaller for the perturbation approach to be valid.
Hence, the maximum valuerm must be chosen such thatrmx . 1 for given values ofε andE.
This excludes in general the possibility of quantizing the system through the trace formula in
this approach. However, we shall be interested only in the low-frequency components of the
oscillating level density, i.e. in its gross-shell structure that is governed by the shortest periodic
orbits and their first few repetitions [4,5].

Our main task now is to generalize the modulation factor (15) in such a way that the trace
formula (14) goes over to the Gutzwiller formula [1] for isolated orbits in the limit of large
perturbationsε that fully break the symmetry, whereas the limitM(0) = 1 is preserved. If
we succeed in finding such a generalization, it will smoothly interpolate between the exact
trace formula (12) for the harmonic oscillator and the Gutzwiller formula for the symmetry-
broken limit, and hence be a suitable uniform approximation. Note that equation (14) with
(15) is exactly of the same form as equation (2) for theU (1) case, except that we now
have a two-fold integral. We can therefore take the same course of action to find a uniform
approximation that has the above two limits: (i) evaluate the asymptotic amplitudes for large
values ofx (i.e. for largeε), (ii) map the exact action shiftδS onto the form obtained from
perturbation considerations (but with freely adjustable parameters), (iii) include under the
integral a parametrized expression of the same form for the product of the amplitude function
A and the JacobianJ of the mapping function, and (iv) adjust all the parameters such that in
the asymptotic limit of largex the correct Gutzwiller amplitudes and actions of the isolated
orbits are obtained, while the unperturbed limit (12) is kept forx = 0.

This procedure is very similar in spirit to that used by Schomerus and Sieber in their
uniform treatment of many types of bifurcations [8]. However, instead of starting from a
phase-space representation of the trace formula and expanding the action in normal forms,
we use the group integral representation of the (unperturbed) trace formula developed by
Creagh and Littlejohn [6]. The latter directly exploits the properties of the symmetry group
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characteristic of the systemH0; it has been used as a starting point for the perturbative trace
formula of Creagh [14], as shown above in equations (14), (15).

Different from theU (1) case (with the exceptions mentioned at the end of the previous
section), the explicit results which we obtain do depend on the explicit form of the Hamiltonian
H1. On the other hand, one of the results (that for the standard Hénon–Heiles potential)
turns out to also apply to a three-dimensional cavity with small axially-symmetric quadrupole
deformations. This is due to the close relation between theSU (2) and theSO(3) symmetry
that is broken in the latter case. We will discuss this system in section 4.

3.1. The quartic H́enon–Heiles potential

We first investigate the quartic Hénon–Heiles (HH4) potential in two dimensions, given in
polar coordinates by

V (r, θ) = 1

2
ω2r2 − α

4
r4 cos(4θ) (16)

which has recently been investigated [18] in the framework of the semiclassical perturbation
theory described above. The limitα = 0 is a harmonic oscillator with theSU (2) symmetry. The
anharmonic term makes the system non-integrable with mixed classical dynamics. It retains
a discrete four-fold rotational symmetry with four saddle points at the energyE∗ = ω4/4α,
through which the particle can escape. The shortest periodic orbits in this system are two pairs
of straight-line librating orbits (named A1 and A2 in [18]) and a circulating orbit (named C).
As in the standard cubic H́enon–Heiles (HH) potential [18, 27, 28], the system is scaled with
α and its dynamics can be described in terms of one continuous parameter, the scaled energy
e defined by

e = E/E∗ = 4αE/ω4. (17)

The actions of the periodic orbits are changed in first order of the perturbation by a shift

δS1 = h̄x(sin2 β cos2 γ − cos2 β) h̄x = S0
3

32
e. (18)

Then, the perturbative modulation factorM(x) in (15) becomes (withu = cosβ)

M(x) = 1

4π

∫ 2π

0
dγ
∫ π

0
sinβ dβ eix(sin2 β cos2 γ−cos2 β)

= 1

2π

∫ 2π

0
dγ
∫ 1

0
du eix[(1−u2) cos2 γ−u2] . (19)

An alternative expression of this is obtained by rotating the unit sphere about an angleπ/4
along the 2 axis:

e′1 =
1√
2
e1− 1√

2
e3 e′2 = e2 e′3 =

1√
2
e1 +

1√
2
e3 (20)

which leads to

M(x) = 1

4π

∫ 2π

0
dγ
∫ π

0
sinβ dβ eix sin(2β) cosγ . (21)

This integral can be performed analytically (see [18]) and yields

M(x) = π

2
√

2
J−1/4

(x
2

)
J1/4

(x
2

)
. (22)

The asymptotic expansion of the Bessel functionsJµ(x) for largex leads to three terms which
we label according to the names of the periodic orbits:

M(x) ∼MC(x) +MA1(x) +MA2(x) (x � 1) (23)
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with

MC(x) = 1

2x
⇒ AC ∼ A0

2x

MA1(x) =
1

2
√

2x
cos(+x − π/2)⇒ AA1 ∼

A0

2
√

2x

MA2(x) =
1

2
√

2x
cos(−x + π/2)⇒ AA2 ∼

A0

2
√

2x
.

(24)

The first term corresponds to the loop orbit C, the second and third terms to straight-line
libration orbits A1 and A2, respectively; each of them has a discrete degeneracy of two which
is included in the amplitudes. These are [18] the only periodic orbits with periods of order
T0 = 2π/ω up to energiese . 0.85. The forms on the left-hand side of equation (24) contain
the exact Maslov indicesσC = 0, σA1 = +1, andσA2 = −1 of the isolated orbits and, with
equation (12), yield the asymptotic amplitudes of the trace formula shown on the right-hand
side of equation (24). For smallx, these amplitudes have been shown in [18] to reproduce
numerically well the diverging Gutzwiller amplitudes of the isolated periodic orbits. Note that
the action shifts predicted at the first order of the perturbation theory are zero for the orbit C
and±h̄x for the orbits A1 and A2, respectively. This can be checked numerically for all orbits,
as well as analytically for the orbits A1 and A2. The actions of the latter, being straight-line
one-dimensional integrals, can be expressed analytically in terms of complete elliptic integrals
(see the appendix) and then be Taylor expanded in powers ofe. The result is

SA1 = S0(1 + 3
32e + 35

1024e
2 + 1155

65 536e
3 + · · ·)

SA2 = S0(1− 3
32e + 35

1024e
2 − 1155

65 536e
3 + · · ·) (25)

which confirms the first-order action shifts±h̄x given in equation (18), (24).
For the following, it is important to trace back the asymptotic forms (24) to singular

points of the integral (19). For this, we first evaluate the asymptotic form of theu integral.
The stationary point atu = 0 yields a term∼1/

√
x, and the end point atu = 1 yields a term

∼1/x. The latter, after an exact integration overγ , gives the contributionMA2(x). Theγ
integral over the first term has four stationary points; saddle-point integration atγ = 0 andπ
yields the contributionMA1(x), and atγ = π/2 and 3π/2 it yields the contributionMC(x).
In summary, we get the periodic orbit contributions asymptotically as follows:

orbit A2 : from u = 1 (anyγ )

orbit A1 : from u = 0 γ = 0 andπ

orbit C : fromu = 0 γ = π/2 and 3π/2.

(26)

We now construct a uniform approximation which for largex yields the correct asymptotic
Gutzwiller trace formula with the contributions from the three leading isolated orbits A1, A2,
and C. For describing the gross-shell structure of the level density, it is sufficient to include
only the lowest few harmonics†, i.e. the first few repetitionsr of the primitive orbits, in the
trace formula. In the following, we shall only give the results forr = 1; higher repetitions can
be included according to equation (14). Hence, the Gutzwiller limit is written as

δgG = AA1 cos

(
SA1

h̄
− σA1

π

2

)
+AA2 cos

(
SA2

h̄
− σA2

π

2

)
+AC cos

(
SC

h̄
− σC π

2

)
. (27)

This limit can be imposed by including under the integral (19) the product of amplitude
functionA(u, γ ) times JacobianJ (u, γ ) in the same form as in the exponent, but with different

† A more consistent truncation of the trace formula, followed below, is achieved by Gaussian smoothing over a small
energy rangeγ , resulting in the amplitudes multiplied by exponential damping factors; see [28] for details. These
exponential factors are included in the amplitudesAA1, AA2, andAC and their combinations defined below.
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parameters:

Mu(x) = 1

2π

∫ 2π

0
dγ
∫ 1

0
du eix[(1−u2) cos2 γ−u2]

×2x

A0
{
√

2AA2u
2 + (1− u2)[

√
2AA1 cos2 γ +AC sin2 γ ]}. (28)

Note that the coefficients in the second line are precisely the inverses of the asymptotic
amplitudes given in (24). In this way, the approximation (28) leads by construction to the
Gutzwiller limit (27) for largex, whereas forx → 0 the diverging Gutzwiller amplitudes
exactly cancel altogether andMu→ 1, as required.

The integrals occurring in (28) can all be performed analytically. For the integral appearing
as the coefficient ofAC , we note thate2

2 = sin2 β sin2 γ is invariant under the rotation (20), so
that we can replace the phase in the exponent by that appearing in equation (21). Then, using
the same transformations as in [18] for obtaining the form (22) of the perturbative modulation
factor, and exploiting some recurrence relations amongst the Bessel functionsJµ(x), we obtain

1

2π

∫ 2π

0
dγ

1

2

∫ π

0
sinβ dβ sin2 β sin2 γeix sin(2β) cosγ

= π

4
√

2

[
J−1/4

(x
2

)
J1/4

(x
2

)
− J−3/4

(x
2

)
J3/4

(x
2

)]
. (29)

The other two integrals can be found first by taking the derivative of equation (19) with respect
to x, and second by integrating the terms proportional tou2 in (28) overu by parts, and
finally by taking suitable linear combinations of the results of these two operations. The final
expression is

Mu(x) = 2x

A0
[ACM−(x) +

√
2ĀAM+(x)− i

√
21AAM′(x)] (30)

where

ĀA =
(
AA1 +AA2

2

)
1AA =

(
AA1 − AA2

2

)
(31)

and

M±(x) = π

4
√

2

[
J−1/4

(x
2

)
J1/4

(x
2

)
± J−3/4

(x
2

)
J3/4

(x
2

)]
M′(x) = − π

4
√

2

[
J−1/4

(x
2

)
J5/4

(x
2

)
+ J1/4

(x
2

)
J3/4

(x
2

)]
.

(32)

The last step now is to insert the modulation factor (30) into equation (14) and to replace
the unperturbed actionS0 in the phase of the first term of (30) bySC , and for the other two
terms by the average actionS̄A of the orbitsSA1 andSA2, while the perturbative action shift ¯hx

is redefined as their difference1SA

h̄x = 1SA = 1
2(SA1 − SA2) S̄A = 1

2(SA1 + SA2). (33)

By these replacements, we ensure that the phases in the asymptotic level density (27) contain
the correct numerical actions of the isolated orbits.

The final form of the uniform level density for the HH4 potential (including only the
primitive orbits, i.e.r = 1) is then:

δgu = (21SA/h̄)Re{ei
h̄
SCACM−(1SA/h̄)

+
√

2e
i
h̄
S̄A [ĀAM+(1SA/h̄)− i1AAM′(1SA/h̄)]}

= (21SA/h̄){ACM−(1SA/h̄) cos(SC/h̄)

+
√

2[ĀAM+(1SA/h̄) cos(S̄A/h̄) +1AAM′(1SA/h̄) sin(S̄A/h̄)]}. (34)
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Figure 1. Oscillating part of level density of the HH4 potential (α = 0.0064), averaged over a
rangeγ = 0.6, versus energyE (units: h̄ω). Solid lines: quantum-mechanical results. Dashed
lines: semiclassical approximations (withrm = 1). Bottom: Gutzwiller trace formula (diverging
at small energies); middle: perturbative trace formula by Creagh (failing at large energies); top:
present uniform approximation (working at all energies).

As in the case of the TGU uniform approximation discussed in section 2, this formula only
holds as long as no bifurcations of the stable isolated orbits occur. For the primitive orbits of
the HH4 system, this does not happen up toe ' 0.85, where the primitive orbit A1 undergoes
an isochronous bifurcation. In the numerical results shown below, we have smoothed the
Gutzwiller amplitude of this orbit (see [18] for details) in order to simulate a better treatment
of this bifurcation by the corresponding uniform approximation [8].

In figure 1 we show a numerical compilation of the three semiclassical approximations
to the level densityδg discussed here (dashed lines) and compare them with the quantum-
mechanical one (solid lines). In all cases, Gaussian averaging over the energyE with a range
γ = 0.6h̄ω has been applied. This damps the amplitudes strongly enough so that only the
primitive orbits (r = 1) need be kept in the semiclassical approaches. At the bottom of this
figure, the Gutzwiller result (27) for the isolated orbits is shown. It gives an excellent agreement
with the quantum result forE & 10h̄ω, even up toe ' 1 (the saddle energy isE∗ ' 39h̄ω
for the caseα = 0.0064 chosen here). For small energies, it diverges due to the approaching
SU (2) symmetry limit. In the middle of the figure, the perturbative result [18] is shown. It
reproduces the quantum result up toE ∼ 13h̄ω, thus catching the essential feature of the
symmetry breaking. (Note that atE ∼ 13h̄ω we havex ∼ 3, showing that the perturbative
approach may also be used for values ofx somewhat larger than unity, cf [14, 18].) For
E > 14h̄ω the anharmonicity is, however, too large for perturbation theory to apply. Finally,
the top part of figure 1 shows the present uniform approximation that reproduces the quantum
result at all energies.

In figure 2 we compare the results of the present uniform approximation (dashed lines) with
the quantum results (solid lines) for two different values of the anharmonicity parameterα. In
the two upper panels, the same smoothing widthγ = 0.6h̄ω was used as in the previous figure
and only the primitive orbits (r = 1) A1, A2 and C were included. In the two lower panels,
we have used a smaller smoothing widthγ = 0.25h̄ω and included the second repetitions (i.e.
rm = 2) of the three orbits as well. Now a more detailed fine structure of the level spectrum is
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Figure 2. Oscillating part of level density of the HH4 potential versus energyE (units: h̄ω).
Solid lines: quantum-mechanical results. Dashed lines: semiclassical results with present uniform
approximation. Left side:α = 0.0036 (E∗ ' 69h̄ω), right side: α = 0.0064 (E∗ ' 39h̄ω).
Upper part:γ = 0.6 andrm = 1, lower part:γ = 0.25 andrm = 2.

resolved; even this is well reproduced by the semiclassical approximation. Only in the regions
corresponding toe = E/E∗ & 0.8 (E & 31h̄ω), can some small differences be seen which
are explained by the fact that at these energies, new orbits with actions comparable to those of
the included orbits withr = 2 exist (after period-doubling bifurcations of the orbits C and A1)
which we have not included. Their inclusion would necessitate a proper uniform treatment of
the corresponding bifurcations, which is outside the scope of this paper.

In the actual computation of the uniform trace formula for small energiese, cancellations
between the diverging Gutzwiller amplitudes take place. This requires their rather accurate
numerical determination. For practical purposes, it is advisable to take advantage of the fact
that for sufficiently small argumentsx = 1SA/h̄, the result (34) goes over into the perturbative
trace formula (14) with the modulation factor (22) which is numerically much more robust.
We found that one may switch between the two formulae for values 1.5 . x . 2.5 without
visibly changing the results shown above.

3.2. The standard H́enon–Heiles potential

We will now investigate the original H́enon–Heiles (HH) potential [27], given in polar
coordinates by

V (r, θ) = 1

2
ω2r2 − α

3
r3 cos(3θ). (35)

The three shortest isolated orbits in this potential, which have been shown [28] to govern the
beating gross-shell structure in the level density of this system, are a straight-line librating orbit
A, a curved librating orbit B, and a circulating orbit C (similar to that in the HH4 potential).
Orbits A and B have a discrete degeneracy of three, due to the three-fold discrete rotational
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symmetry of the potential (35), and the orbit C is two-fold degenerate due to time reversal
symmetry.

Because of the odd power of the anharmonic term in (35), the first-order perturbation
result is zero both classically and quantum-mechanically. In second-order perturbation, the
action shiftδS due to the anharmonicity is given [18] by

δS2 = h̄x(5− 7 cos2 β)/6 (36)

with

h̄x = S0

12

E

E∗
= S0

12
e E∗ = ω6

6α2
. (37)

HereE∗ is the saddle energy for the potential (35), andS0 is the action of the unperturbed
harmonic oscillator given in (12). The perturbative modulation factorM(x) becomes

M(x) = 1

4π

∫
d� eix(5−7u2)/6 =

∫ 1

0
du eix(5−7u2)/6. (38)

This integral can be expressed analytically in terms of the Fresnel functionsC(x) andS(x)
(we use the convention of Abramowitz and Stegun [29]):

M(x) = e5ix/6 1

ξ
[C(ξ)− iS(ξ)] ξ =

√
7|x|
3π

. (39)

Using the asymptotic expansion of the Fresnel functions for large argumentsx � 1,

C(ξ) ∼ 1

2
+

1

πξ
sin(πξ2/2)

S(ξ) ∼ 1

2
− 1

πξ
cos(πξ2/2)

(40)

we get the asymptotic result

δg ∼
√

3π

14|x|A0 cos(S0/h̄ + 5x/6− π/4) +
3

7|x|A0 cos(S0/h̄− x/3 +π/2) (41)

which is again only correct for sufficiently small values of the scaled energye so thatx . 1.
Note that (41) predicts the action shift1SC and the average action shift1SAB to be

1SC = SC − S0 = −h̄x/3 1SAB = S̄AB − S0 = 5h̄x/6 S̄AB = 1
2(SA + SB).

(42)

This is numerically well fulfilled at lower energies. The expansion (41) is also obtained from
the asymptotic analysis of the integral (38), whereby the first term comes from the stationary
point atu = 0 and the second term is the end-point correction fromu = 1. The latter
corresponds to the C orbit in the HH potential with the correct Maslov index [18]σC = −1.
Its amplitude is thus predicted in the second-order perturbation theory as

A
pt2
C =

6E

7(h̄ω)2x
= 36

7πh̄ω

1

e
(43)

which was shown in [18] to describe the numerical Gutzwiller amplitudeAC well, not only
for smalle where it diverges, but also up to energiese ' 1. The first term in (41) corresponds
to the sum of orbits A and B which, however, are still degenerate on the circleγ ∈ [0, 2π) at
the second order of the perturbation expansion and therefore have an asymptotic amplitude too
large by a factor 1/

√
h̄. These orbits are broken up only at fourth order, with an action shift

δS4 = −h̄y sin3 β cos(3γ ) y = c4e
3. (44)
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Including this into the phase of the modulation factor, we get

M(x, y) =
∫ 1

0
du eix(5−7u2)/6 1

2π

∫ 2π

0
dγ e−iy(1−u2)3/2 cos(3γ )

=
∫ 1

0
du eix(5−7u2)/6J0[y(1− u2)3/2]. (45)

In the asymptotic expansion of this modulation factor, the Bessel function modifies only the
contribution from the stationary point atu = 0, leading to

δg ∼
√

3π

14|x|A0J0(y) cos(S0/h̄ + 5x/6− π/4) +
3

7|x|A0 cos(S0/h̄− x/3 +π/2). (46)

Upon further expansion ofJ0(y) for y � 1, this yields the amplitudes and the correct Maslov
phases [18]σA = 1 andσB = 0 of the (now isolated) orbits A and B. The amplitudes, which
are equal at this order of the perturbation theory, go like 1/

√|xy| and thus have the same power
of h̄ asApt2C . The actions of the orbits A and B are shifted from the average valueS̄AB by an
amount±h̄y, respectively. For the orbit A, this can again be checked by analytical integration
(see the appendix) and Taylor expansion of its period. The action becomes

SA = S0

(
1 +

5

72
e +

385

15 552
e2 +

85 085

6 718 464
e3 + · · ·

)
. (47)

The first correction term is the average action shift1SAB (42), obtained for both orbits A and B
at second order of the perturbation theory; the next term gives the value ofc4 in equation (44).
With this, the fourth-order prediction of the average amplitude of orbits A and B becomes

A
pt4
AB =

E

(h̄ω)2

√
3

7|xy| =
216

7πh̄ω

√
3

55

1

e3/2
. (48)

(Note that this amplitude contains the degeneracy factor 3 of the orbits A and B mentioned
above; it is related to the factor 3 in the argument of the cos function in (44). Similarly,A

pt2
C

(43) contains the time-reversal factor 2 of the orbit C, which is related to the two end-point
corrections, coming from theu integral in (38) which originally runs from−1 to +1, each
giving one half of the second term in (41).)

We now redefine the quantitiesx andy in terms of the true actions of the isolated periodic
orbits

h̄y = δS = 1
2(SA − SB) 7

6h̄x = 1S = 1
2(SA + SB)− SC (49)

and introduce the combinations of the Gutzwiller amplitudes

ĀAB = 1
2(AA +AB) 1AAB = 1

2(AA − AB). (50)

The uniform approximation to the modulation factor is then

Mu = 1

A0

∫ 1

0
du e(i/h̄)1S(5/7−u

2) 1

2π

∫ 2π

0
dγ e−(i/h̄)δS (1−u

2)3/2 cos(3γ )

×
{

2|1S|
h̄

AC u
2 +

√
4|1S|
h̄π

(1− u2)

√
2π |δS|
h̄

[ĀAB +1AAB cos(3γ )]

}
.

(51)

The second line above is again the parametrized productA(u, γ )J (u, γ ), with coefficients
chosen such that asymptotically for large1S andδS, the Gutzwiller limit

δgG = AA cos(SA/h̄− σAπ/2) +AB cos(SB/h̄− σBπ/2) +AC cos(SC/h̄− σCπ/2) (52)
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is reached. (The degeneracy factors due to discrete symmetries discussed above are again
included in the amplitudes.) In the limit1S = δS = 0, on the other hand,Mu (51) still
reduces to unity as it should.

The two-dimensional integrals in (51) cannot be done analytically here. It turns out,
however, that we can approximate them without violating the above two limits†. For that we
note that the first term (corresponding to orbit C) asymptotically gets contributions only from
u ' 1; we may therefore putu = 1 in the exponent of theγ integral which then becomes
unity. The second term of (51), corresponding to orbits A and B, asymptotically only gets
contributions fromu ' 0. Puttingu = 0 in the exponents of theγ integrals leads to Bessel
functionsJ0 and J1 as in the TGU formula (11). The remainingu integrals can now be
expressed again in terms of the Fresnel functions after some partial integrations; therefore we
keep only the leading-order terms in ¯h. We then arrive at the uniform trace formula for the HH
potential, including the contributions from the three primitive orbits A, B, and C,

δgu = AC cos

(
SC

h̄
+
π

2

)
−
√∣∣∣∣2δS1S

∣∣∣∣
×
[
ĀABJ0

(
δS

h̄

)
cos

(
SC

h̄
+
π

2

)
−1AABJ1

(
δS

h̄

)
sin

(
SC

h̄
+
π

2

)]
+C

(√
2|1S|
h̄π

)√
4π |δS|
h̄

×
[
ĀABJ0

(
δS

h̄

)
cos

(
S̄AB

h̄

)
−1AABJ1

(
δS

h̄

)
sin

(
S̄AB

h̄

)]
+S

(√
2|1S|
h̄π

)√
4π |δS|
h̄

×
[
ĀABJ0

(
δS

h̄

)
sin

(
S̄AB

h̄

)
+1AABJ1

(
δS

h̄

)
cos

(
S̄AB

h̄

)]
. (53)

In the low-energy limit1S → 0, δS → 0, the second line of (53) cancels the orbit C term in
the first line, the fourth line vanishes, and the third line yields the HO trace formula (12).

At energies where the C orbit is well isolated and separated from the A and B orbits
(1S � h̄) but the splitting of A and B is still small (δS . h̄), we can use the asymptotic
forms (40) of the Fresnel functions. Hereby the second terms from (40) combine to cancel the
second line in (53), whereas the leading terms combine into

δgu = AC cos

(
SC

h̄
+
π

2

)
+

√
2π |δS|
h̄

[
ĀABJ0

(
δS

h̄

)
cos

(
S̄AB

h̄
− π

4

)
−1AABJ1

(
δS

h̄

)
sin

(
S̄AB

h̄
− π

4

)]
(x � 1) (54)

so that the second line contains nothing but the TGU approach to orbits A and B, kept separate
from the isolated orbit C contribution.

In figure 3 we show the numerical results obtained with the uniform approximation (53)
usingrm = 2 (dashed line), compared with the quantum-mechanical result (solid line) for the
HH potential withα = 0.04 and a Gaussian averaging with widthγ = 0.25h̄ω. The agreement
is perfect for all energies up toe ∼ 0.73. The differences seen fore & 0.73 are due to some

† These approximations correspond, in fact, to neglecting only higher-order terms in ¯h. We have checked by numerical
integration that these do not affect the results discussed below.
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Figure 3. Oscillating part of level density of the HH potential (α = 0.04), Gaussian averaged over
a rangeγ = 0.25, versus scaled energye. Solid line: quantum-mechanical result; dashed line:
semiclassical result in the present uniform approximation withrm = 2. (Units: h̄ω.)

missing orbits which arise after period-doubling bifurcations of the primitive orbits A and C,
and perhaps to the isochronous bifurcation of the A orbit that occurs only ate ' 0.97 but
may make itself felt in the amplitudeAA already at smaller energies. (Note that, in contrast
to the HH4 case above, we have not smoothed this amplitude here.) All these bifurcations
can be treated with the uniform approximations developed in [8]. Part of the disagreement for
e & 0.75 is also due to inaccuracies in the diagonalization of the quantum HH Hamiltonian in
a finite basis [28].

As in the case of the HH4 potential, theSU (2) limit is reached in the uniform approximation
(53) through a subtle cancellation of divergences in the Gutzwiller amplitudes. Numerically,
the most robust procedure is to use the perturbative result (39) for values ofx = 61S/7h̄ up
to∼1.5− 2.5, and then to switch to the uniform approximation.

4. Axial quadrupole deformations of a spherical cavity

We finally discuss three-dimensional cavities with axially symmetric quadrupole deformations
that can be treated with the uniform approximation developed above for the HH potential. The
boundary of the cavities is in polar coordinates given by

R(θ, φ) = R0[1 + εP2(cosθ)] (55)

whereP2(x) = (3x2 − 1)/2 is the second Legendre polynomial. The periodic orbits in a
spherical cavity with ideally reflecting walls have been discussed extensively by Balian and
Bloch [2], and an analytical trace formula has been given by these authors for its level density
which we again write as in equation (4). The three-dimensional degeneracy of the polygonal
orbits withN > 3 corners, due to theSO(3) symmetry of the sphere, can be described by the
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three Euler angles (α, β, γ ), and the corresponding group integral is [6,14]

1

8π2

∫ 2π

0
dγ
∫ π

0
sinβ dβ

∫ 2π

0
dα = 1. (56)

We choose the Euler angles such thatβ is the angle between the normal to the plane of motion
of an orbit family and thez-axis,γ describes the orientation of a single orbit within this plane
(i.e. within the family), andα describes rotations of the orbit plane around thez-axis. As
long as we restrict the deformations of the cavity to be axially symmetric (around thez-axis),
the action of the perturbed orbits will not depend on the angleα. For small deformations,
the contribution of each periodic orbit family to the spherical trace formula can thus again be
written in the perturbative approach as

δgpert = Re{M(x, y)ei(S0/h̄−σ0π/2)} (57)

where the modulation factor is

M(x, y) = 1

2π

∫ 2π

0
dγ
∫ 1

0
du eiδS(u,γ ;x,y). (58)

Herex andy are parameters depending on the deformationε, the energy, and the specific orbit
type. When bothx andy are non-zero, the orbit families are broken into singly degenerate
families of orbits lying in planes. These come in two types. One type is lying in planes
perpendicular to the symmetry axis (coming from the end-point correction atu = 1); we will
henceforth call them theequatorial orbits. They are identical to the orbits in a two-dimensional
circular billiard. The other type of orbits lie in planes that contain the symmetry axis (coming
from the stationary pointu = 0); we will call these theplanar orbits. They are isolated in their
plane of motion and will, for small deformations, come in pairs of stable and unstable orbits.
With the exception of a completely isolated linear orbit that oscillates along the symmetry
axis, all the equatorial and planar orbits have the continuous one-parameter degeneracy due to
rotation of the plane of motion around the symmetry axis.

We see, therefore, that the situation is completely analogous to that of the HH potential
discussed in the previous section: orbit C corresponds to the equatorial orbit families (with
two orientations connected to time reversal), and orbits A and B to the pairs of planar
orbits. The only difference is that, since we start here from a three-dimensional system
with SO(3) symmetry, the breaking of two degrees of degeneracy leaves the orbits in singly
degenerate families. Furthermore, the planar orbits do not have the discrete three-fold rotational
degeneracy as the A and B orbits in the HH potential, but occasional two-fold degeneracies
due to the symmetry of reflection at the equator plane. We can therefore take over the previous
results with little effort. We shall first discuss the family of polygon orbits withN > 3 corners,
and come to the diameter orbits (N = 2) later.

4.1. Polygon orbits withN > 3

The families of polygon orbits in the sphere have, in principle, the fullSO(3) symmetry.
However, when we limit the deformation of the cavity to axially-symmetric shapes, the action
shift depends only on two of the Euler angles, so that the symmetry breaking problem is the
same as in the HH potential considered above. In first-order perturbation theory [15], the
action shift depends only on the angleβ:

δS1 = −1S P2(cosβ) 1S = ε

2
S0. (59)

This corresponds to the fact that a quadrupole deformation to lowest order inε is identical
to that of an axially symmetric ellipsoid, which is an integrable system and thus has an extra
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symmetry with two-fold degenerate orbit families (i.e., polygons withN > 3 fitting into the
ellipse that gives the boundary of the plane of motion). As for orbits A and B of the HH
system, this symmetry will be broken only at a higher order in the perturbation expansion; in
the present case we expect this to happen at the third order inε, with an action shift

δS3 = −δSpl sin3 β cos(nγ ) (60)

wheren counts the discrete symmetries of the planar orbits and will again be absorbed into
the Gutzwiller amplitudes. With this, the modulation factor becomes

M(x, y) =
∫ 1

0
du eix(1−3u2)/2 1

2π

∫ 2π

0
dγ e−iy(1−u2)3/2 cos(nγ ) (61)

with h̄x = 1S andh̄y = δSpl . For smallx andy, the action shifts will be

(u = 1) : Seq − S0 = −x = −h̄1S
(u = 0) : S̄pl − S0 = +x/2= +h̄1S/2

(62)

with

S̄pl = 1
2(S

u
pl + Sspl) Supl = S̄pl + δSpl Sspl = S̄pl − δSpl. (63)

The modulation factor (61) has exactly the same form as that of the HH case (45). However,
different from there,x andy can have both signs, depending on the sign ofε. Therefore,
switching from prolate deformations (ε > 0), which is analogous to the HH situation, to
oblate deformations (ε < 0), one has to take the complex conjugate of the modulation factor
before using it in (57). This only affects some of the signs in the final results; in the following
formulae the upper signs correspond to the prolate case and the lower signs to the oblate case.

The final trace formula for one type of orbit (with fixed numberN > 3 of corners, and
without including their higher repetitions) becomes

δg(N>3)
u = Aeq cos8eq −

√
2|δS|
|1S|

[
ĀplJ0

(
δS

h̄

)
cos8eq −1AplJ1

(
δS

h̄

)
sin8eq

]

+C

(√
2|1S|
πh̄

)√
4π |δS|
h̄

[
ĀplJ0

(
δS

h̄

)
cos8̄pl −1AplJ1

(
δS

h̄

)
sin8̄pl

]

±S
(√

2|1S|
πh̄

)√
4π |δS|
h̄

[
ĀplJ0

(
δS

h̄

)
sin8̄pl +1AplJ1

(
δS

h̄

)
cos8̄pl

]
(64)

where we have re-defined
3
2h̄x = 1S = S̄pl − Seq h̄y = δS = 1

2(S
u
pl − Sspl)

8eq = Seq

h̄
− σeq π

2
8̄pl = S̄pl

h̄
− σ0

π

2
.

(65)

and the combinations of Gutzwiller amplitudes (including discrete degeneracy factors)

Āpl = 1
2(A

u
pl +Aspl) 1Apl = 1

2(A
u
pl − Aspl). (66)

The correct Maslov indices of the asymptotic orbits become

σeq = σ0 ∓ 1 σ̄pl = 1
2(σ

u
pl + σ spl) = σ0 ± 1

2 σupl = σ spl + 1. (67)

At moderately large deformations, the equatorial and planar orbits are sufficiently well
separated, so that we can take the limit|1S| � h̄. The result (64) then simplifies to

δg(N>3)
u = Aeq cos8eq +

√
2π |δS|
h̄

[
ĀplJ0

(
δS

h̄

)
cos

(
S̄pl

h̄
− σ̄pl π

2

)
− 1AplJ1

(
δS

h̄

)
sin

(
S̄pl

h̄
− σ̄pl π

2

)]
(68)
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which again contains the simple TGU formula applied to the planar orbits. At larger
deformations (but still before any bifurcations take place), we expand the above for|δS| � h̄

and obtain the Gutzwiller limit

δg
(N>3)
G = Aeq cos8eq +Aupl cos8u

pl +Aspl cos8s
pl. (69)

4.2. Diameter orbits(N = 2)

The diameter orbits (N = 2) in a spherical cavity have only a continuous degeneracy of two,
since rotation about themselves does not bring about any new orbit [2]. It is convenient to
re-define the Euler angles such thatβ describes the angle between the diameter orbit and
the z-axis. In first-order perturbation theory, the action shift of the diameter orbit due to a
quadrupole deformation (55) is then given by [15]

δS1 = εS0P2(cosβ). (70)

Hence the modulation factor for small deformations becomes

M(x) =
∫ 1

0
du eix(3u2−1)/2 (71)

with h̄x = εS0. Asymptotically, we get fromu = 0 the equator orbits which keep theU (1)
degeneracy corresponding to rotation about thez-axis, and from the end pointu = 1 we find
the isolated diameter orbit along thez-axis. Their action shifts for smallx will be

Seq − S0 = −h̄x/2 Siso − S0 = +h̄x. (72)

The situation thus corresponds exactly to the case for the polygonal orbits, but withy = 0
since there is no further splitting of the isolated diameter orbit, and with the roles of prolate and
oblate deformations interchanged. The uniform trace formula for the diameter contributions
is thus

δg(N=2)
u =

(
Aiso −

√
h̄

π |1S|Aeq
)

cos8iso +
√

2Aeq

[
C

(√
2|1S|
πh̄

)
cos

(
Seq

h̄
− σ0

π

2

)

∓S
(√

2|1S|
πh̄

)
sin

(
Seq

h̄
− σ0

π

2

)]
. (73)

Hereby we have re-defined

1S = Siso − Seq 8iso = Siso

h̄
− σiso π

2
σiso = σ0 ± 1. (74)

For |1S| � h̄, we get the Gutzwiller limit for the diameter orbits:

δg
(N=2)
G = Aeq cos8eq +Aiso cos8iso (75)

with

8eq = Seq

h̄
− σeq π

2
σeq = σ0 ∓ 1

2
. (76)

In all the equations above, the upper and lower signs correspond to1S > 0 (prolate case) and
1S < 0 (oblate case), respectively.

In figure 4 we show the oscillating partδg(k)of the level density for a very small quadrupole
deformation ofε = 0.01, Gaussian-averaged overk with a rangeγ = 0.6R−1 and plotted
versus the wavenumberk = √2mE/h̄. Note the pronounced ‘supershell’ oscillations that
are mainly a result of the interfering triangle and square orbits [2]. In the semiclassical
result (dashed line), periodic orbits with up toN = 6 reflections were included in the
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Figure 4. Oscillating part of level density in an axially-symmetric quadrupole-deformed cavity
with deformationε = 0.01, Gaussian averaged overk with a rangeγ = 0.6, versus wavelength
k (units: R−1). Solid line: quantum-mechanical result; dashed line: semiclassical result in the
present uniform approximation using equatorial and planar orbits with up toN = 6 reflections.

Figure 5. Same as figure 4, but for the deformationε = 0.1.

uniform approximation given by equations (64), (73); identical results are obtained at this
deformation in the perturbative approach. Both reproduce the quantum-mechanical result
(solid line) very well. For details concerning the calculation of the Gutzwiller amplitudes
for the equatorial and planar orbits in non-integrable axially deformed cavities, we refer to a
forthcoming publication [25]. In figure 5, we show the corresponding results at a quadrupole
deformation ofε = 0.1 at which the supershell beating is already reduced [15].

The relative importance of the different orbits at these deformations can most easily be
analysed in the Fourier spectra of the oscillating level densityδg(k). Since billiard systems
exhibit scaling (i.e. the properties of the periodic orbits do not depend on energy), the Fourier
transform with respect tok gives directly power spectra in which the peaks occur at the
lengths of the contributing periodic orbits. Figures 6 and 7 present the absolute values of
the Fourier transforms of the level densities shown in the above two figures. In figure 6, the
peaks corresponding to equatorial and planar orbits cannot be separated, since at the small
deformationε = 0.01 the spherical tori are hardly broken. Indeed, the perturbative result
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Figure 6. Fourier transform of the level densities shown in figure 4. The symbols indicate the
periodic orbits corresponding to the Fourier peaks. The deformation (ε = 0.01) is so small here
that equatorial and planar orbits are not separated yet. The perturbation approach (short-dashed
line) gives practically identical results as the uniform approximation (long-dashed line) and the
quantum mechanics (solid line).

Figure 7. Fourier transform of the level densities shown in figure 5. At this deformation (ε = 0.1),
the equatorial orbits (symbols in heavy circles) are well separated from the planar orbits (symbols
in thin ovals). However, the pairs of isolated stable and unstable planar orbits are not separated yet,
as seen from the large peaks obtained with the Gutzwiller trace formula (thin-dashed line). The
tiny bump atL ' 4.4R corresponds to the unstable isolated diameter orbit along the symmetry
axis, whose Gutzwiller amplitude is smaller than all the others by a factor

√
h̄/kR.

(short-dashed line) gives practically identical results as the uniform approximation (long-
dashed line); both agree very well with the quantum result. At the deformationε = 0.1, the
equatorial and planar orbits are already well separated, as can be seen from figure 7, so that
the full uniform approximation (64) for the orbits withN > 3 can be replaced by the TGU
approximation given in equation (68). However, the separation of the stable and unstable planar
orbits is still very small. Therefore, the Gutzwiller trace formula dramatically overestimates
their combined amplitudes, as seen from the short-dashed line.
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5. Summary

We have derived uniform approximations for the semiclassical description of systems with
perturbedSU (2) andSO(3) symmetry. Different from the case of bifurcations, where uniform
approximations are most effectively derived from the expansion of the classical action in phase-
space into normal forms [8], we use the group integral representation of the unperturbed trace
formula [6] and the classical perturbation theory [14] as starting points for our development.

In terms of analytical trace formulae we can interpolate smoothly from the integrable
limits to the limits where their symmetries are broken and the asymptotic Gutzwiller trace
formulae for the leading periodic orbits are reached. In the two-dimensional Hénon–Heiles
type potentials with brokenSU (2) symmetry, these orbits are isolated, whereas in the axially-
symmetric quadrupole-deformed cavities with brokenSO(3) symmetry, they retain a one-
dimensional degeneracy corresponding to the rotation about the symmetry axis. In all cases,
the few shortest periodic orbits that were considered could account quantitatively for the gross-
shell effects found in the coarse-grained quantum-mechanical level densities.

Unlike for the breaking of an orbit family withU (1) symmetry into pairs of stable and
unstable isolated orbits, for which case Tomsovicet al [19] have found the universal uniform
approximation given in equation (11), our present results forSU (2) andSO(3) breaking are not
universal. This is due to more complicated scenarios for the breaking of rational tori that arise
when more degrees of freedom, or higher-dimensional degeneracies of the orbit families, are
involved. The two examples of the HH4 and HH potentials show how the symmetry breaking
can happen at different orders in the perturbation theory and lead to quite different modulation
factors; see equations (19) and (45) which were the starting point of our development. However,
due to the feasibility of the perturbation theory and the generality of the scheme for the uniform
approximation used in this study, our method can easily be also applied to other potentials and
different symmetries of the unperturbed system.
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Appendix. Analytical results for linear periodic orbits

For the test of numerical routines that solve equations of motion and determine the actions of
periodic orbits, it might be helpful to compare them with analytical results where available.
The straight-line librating periodic orbits in the Hénon–Heiles potentials allow for an analytic
calculation of their actions or periods. We give the results and a brief sketch of their derivations.

A.1 TheA1 andA2 orbits in the HH4 potential

The potential

V (r, θ) = 1

2
ω2r2 − α

4
r4 cos(4θ) (A1)

has two pairs of linear librating orbits: the A1 orbits oscillating along thex- andy-axes (θ = 0
andπ/2), and the orbits A2 oscillating along the diagonals (θ = π/4 and 3π/4). We scale the
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potential with the factor 1/E∗ = 4α/ω4, so that the equations for their classical turning points
are

e = 2x2 ∓ x4 (A2)

in terms of the scaled energye (17) and the scaled radial coordinatex = r√α/ω. The upper
and lower sign in (A2) holds for the orbits A1 and A2, respectively. The four solutions of
equation (A2) with the ‘−’ sign are given by±x1 and±x2, where

x1 =
√

1−√1− e x2 =
√

1 +
√

1− e (A3)

and±x1 are the classical turning points of the A1 orbits. Their action is then

SA1 = 8
√

2
E∗

ω

∫ x1

0

√
(e − 2x2 + x4) dx = 8

√
2
E∗

ω

∫ x1

0

√
(x2

1 − x2)(x2
2 − x2) dx (A4)

which can be expressed in term of the complete elliptic integralsK(t) = F(π/2, t) and
E(t) = E(π/2, t) in terms of the quantity

t =
(
x1

x2

)2

= 1−√1− e
1 +
√

1− e . (A5)

The result is

SA1(e) =
16
√

2

3

E∗

ω

√
1 +
√

1− e
[
E(t)−√1− eK(t)

]
(e < 1). (A6)

At e = 1 we get simplySA1(1) = 16
√

2E∗/(3ω).
For the A2 orbits, the solutions of equation (A2) with the ‘+’ sign are given by±x1 and

±ix2, where now,

x1 =
√√

1 + e − 1 x2 =
√√

1 + e + 1 (A7)

and±x1 are again the classical turning points. The action of the A2 orbits is then

SA2 = 8
√

2
E∗

ω

∫ x1

0

√
(x2

2 + x2)(x2
1 − x2) dx (A8)

which becomes

SA2(e) =
16

3

E∗

ω
(1 + e)1/4

[(
1 +
√

1 + e
)
K(κ)− 2E(κ)

]
(A9)

in terms of the quantity

κ = x2
1

(x2
1 + x2

2)
=
√

1 + e − 1

2
√

1 + e
. (A10)

Taylor expansion of equations (A6), (A9) in powers ofe leads to the result given in
equation (25).

A.2 The A orbit in the HH potential

The potential

V (r, θ) = 1

2
ω2r2 − α

3
r3 cos(3θ) (A11)

has linear librating orbits A oscillating along the symmetry axes (θ = 0, 2π/3 and 4π/3).
We scale the potential with the factor 1/E∗ = 6α2/ω6, so that the equation for the classical
turning points is

e = 3x2 − 2x3 (A12)
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in terms of the scaled energye = E/E∗ and the scaled radial coordinatex = rα/ω2. The real
solutions for this cubic equation fore 6 1 are, withx1 6 x2 6 x3,

x1 = 1
2 − cos(π/3− φ/3) x2 = 1

2 − cos(π/3 +φ/3) x3 = 1
2 + cos(φ/3) (A13)

where

cosφ = 1− 2e. (A14)

The action of the A orbit is then

SA = 4
√

3
E∗

ω

∫ x2

x1

√
e − 3x2 + 2x3 dx = 4

√
6
E∗

ω

∫ x2

x1

√
(x − x1)(x2 − x)(x3− x) dx

(A15)

but we could not find an analytical expression for this integral. Instead, we calculate the period
TA = dSA/dE

TA =
√

6

ω

∫ x2

x1

1√
(x − x1)(x2 − x)(x3− x)

dx (A16)

which again can be expressed in terms of a complete elliptic integral by

TA(e) =
√

6

ω

2√
x3− x1

K(q) (e < 1) (A17)

where

q =
(
x2 − x1

x3− x1

)
. (A18)

(Note thatTA diverges ate = 1.) Expansion of (A17) in powers ofe and integrating over the
energyE leads to the result given in equation (47).
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