IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Uniform trace formulae for SU(2) and SO(3) symmetry breaking

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 331
(http://iopscience.iop.org/0305-4470/32/2/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:31

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger82(1999) 331-353. Printed in the UK Pll: S0305-4470(99)96541-1

Uniform trace formulae for SU(2) and SO(3) symmetry
breaking

M Brack, P Meier and K Tanakat
Institut fur Theoretische Physik, UniverattRegensburg, D-93040 Regensburg, Germany

Received 31 July 1998

Abstract. We develop uniform approximations for the trace formula for non-integrable systems
in which SU(2) symmetry is broken by a nonlinear term of the Hamiltonian. As specific examples,
we investigate ldnon—Heiles type potentials. Our formalism can also be applied to the breaking of
SO(3) symmetry in a three-dimensional cavity with axially-symmetric quadrupole deformation.

1. Introduction

Systems with mixed classical dynamics have so far offered the most difficult problems in the
attempts of a semiclassical quantization in terms of periodic orbits [1-4]. These problems
have mainly three origins: (1) the existence of continuous symmetries that make (some of)
the periodic orbits non-isolated, (2) bifurcations of stable orbits, and (3) the proximity of a
higher symmetry that is reached by letting a continuous parameter go to zero. In all three
cases, the original trace formula of Gutzwiller [1] cannot be used because the stationary-
phase integration transverse to the periodic orbits used in its derivation, is not justified and
leads to divergences. By now, the problems connected to (1) and (2) are essentially solved.
Besides fully integrable systems [2, 3], non-integrable systems with various kinds of continuous
symmetries can also be treated by properly extended versions of the Gutzwiller theory [5, 6].
Considerable progress has also recently been made in the treatment of bifurcations, after earlier
indications of how to go beyond the simplest saddle-point integration [2, 3, 7]. Sieber and
Schomerus [8,9] have systematically developed uniform approximations to the most common
types of bifurcations, expanding the action integrals in the neighbourhood of a bifurcation point
into normal forms in phase space [10]. The resulting trace formulae interpolate continuously
between the appropriate Gutzwiller limits that are sufficiently far away from the bifurcation
points, where the stationary-phase integration can be applied.

In this paper, we shall be concerned with the third type of problem which arises from
the breaking of a given symmetry through a continuous parameter in the Hamiltonian. Let
us start from an integrable system described by a HamiltoHg@which possesses a certain
continuous symmetry. As a consequence of this symmetry, the periodic orbits in the classical
system occur in degenerate families living Nrtori in phase space, where is the number
of degrees of freedom of the integrable system. We now perturb the system by adding to it a
term that breaks the symmetry:

H = Hy+eH;. (1)
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Heree is a continuous dimensionless parameter which in the following we may also call a
‘deformation’. Due to the symmetry breaking, some (or all) of the rational tori containing the
periodic orbit families are broken up into orbits that have a lesser degree of degeneracy than
those ofHy, or are completely isolated. System (1) will in general exhibit mixed classical
dynamics, and iff; breaks all continuous symmetries 8§, it will become chaotic for large
values ofe and for large energies, where the standard Gutzwiller trace formula can be applied.
However, for smalk the amplitudes in this formula become very large; they actually diverge
for e — 0. This is due to the fact that although the rational tori are broken up fer0,

the periodic orbits are still not sufficiently isolated as long as their perturbed actions differ by
less thari, and consequently the stationary-phase integration transverse to the orbits fails as
mentioned above. One then has to find more accurate ways of performing the trace integration
over the semiclassical Green’s function; in principle, closed non-periodic orbits will thereby
also contribute significantly to the result [11].

In the limit of small perturbationss « 1, classical perturbation theory may be used
to derive trace formulae with finite amplitudes that yield the correct limitdor O.
Generalizing earlier attempts [12,13], Creagh [14] has recently developed a scheme to derive
perturbative trace formulae for the breaking of arbitrary continuous symmetries, including e.g.
SO(3) (spherically symmetric potentials) 8t/ (N) (harmonic oscillators iV dimensions).
Applications of this approach have been presented in [15-18]. The results successfully describe
the transitions from higher to lower (or no) symmetry for small or moderate deformatibas
they eventually fail when the perturbative regime is exceeded. Inthe limit of large perturbation,
€ > 1, one would like to recover the Gutzwiller trace formula [1] for isolated orbits, or its
corresponding extension [5, 6] if some continuous symmetries are left. A closed form of an
approximation that yields this limit as well as the correct trace formula of the integrable system
Hy for e — 0 is called a uniform approximation, in analogy to the uniform approximations
that interpolate continuously across bifurcations.

Tomsovicet al [19] have recently derived a uniform approximation for the breaking of
U(1) symmetry in a two-dimensional system. Their result is quite general and applies to all
systems where the rational tori are broken into pairs of stable and unstable isolated orbits. No
analogous result is known to us for the breaking of a higher symmetry in any dimension. We
will discuss the approach of [19] briefly in section 2 and re-derive it from the perturbative limit
in a heuristic way that is suitable for an extension to higher symmetrigg.of

In this paper, we derive uniform approximations to perturbed harmonic oscillators in two
dimensions, wherédy hasSU(2) symmetry (section 3). We furthermore apply one of the
results to a three-dimensional cavity with small axially-symmetric quadrupole deformations,
where one starts froriO (3) symmetry (section 4).

Our aimis not the full quantization of these systems, but the description of their gross-shell
properties which are determined by the shortest orbits [4,5]. The use of periodic orbit theory
to describe shell effects in many-fermion systems in terms of a few short orbits has found nice
applications, e.g., in nuclei, for ground state deformations [20] and the mass asymmetry of
fission [21]; in metal clusters, for supershells [22] and (using the perturbative approach [14])
their modifications due to deformations [15, 16] and magnetic fields [17]; and in semiconductor
quantum dots, for magnetization [13, 23] and conductance fluctuations [16, 24].

2. Recapitulation of U' (1) breaking

We start by recapitulating the work of Tomsotal [19] for the breaking ot/ (1) symmetry
in a two-dimensional system. We shall re-derive their result in the simplified version given
by Sieber [9], using a heuristic way which will be generalized in the later sections to systems
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with higher symmetries.

We restrict ourselves to the most frequently occurring case, i.e. that of a periodic orbit
family on a 2-torus broken into a non-degenerate pair of stable and unstable isolated orbits.
In the two-dimensional trace integral, one integration is performed exactly along the orbits as
usual. The space variabdetransverse to the orbit can always be mapped onto a vargable
which is cyclic in [Q 27) and as a function of which the action shift is proportional to(¢ys
(‘pendulum mapping’ in [19]). Hence, the contribution of an orbit family to the trace formula
is

2 )
3g = Re{é%% fo A() T (¢)ei®Scosd) d¢}. )

Here A(¢) is the Gutzwiller amplitude function in the trace formula for the perturbed system,

J (@) = 9q/d¢ is the Jacobian due to the variable mapping, énd= So/% — oo /2 is

the overall phase (including the actidh and the Maslov indexy) of the level density in

the unperturbed system witti(1) symmetry. The quantityS cos(¢) in the exponent is the
action shift caused by the symmetry breaking term in the Hamiltonian. For a first inspection,
perturbation theory might give a hint as to the value of the constativhich depends on the
energy and on the parameters in the symmetry breaking term, such as deformation, nonlinearity,
etc.). Hereby one may have to go beyond the first order of the perturbation expansion. Recent
work on Henon—Heiles systems [18] gives us a hint that going to the lowest order at §¢hich
becomes non-zero—however high it may be—can be combined with keeping the unperturbed
amplitudeAq. PuttingA(¢)J (¢) = Ao, which one may do in the small-perturbation limit,
the¢ integral in (2) can be done analytically, and one obtains

88 = AoJo(8S/h) cog Do) 3)
where Jp(x) is a standard cylindrical Bessel function. Wheis zero, we have the trace
formula in the symmetric limit (for one orbit family)

5g0 = Agcogdg) = Ag CO&S()/E — (707'[/2). (4)

For large deviations from th& (1) symmetry, i.e. fosS > &, we can use the asymptotic
expansion of/p(x) ~ /(2/7|x]) cogx — 7 /4) to find

3g ~ Aoy h/2m|8S|[cos( Do +8S/h — m/4) + cog Do — 8S/h+7/A)]. (B)

This corresponds to the two isolated orbits with the action shift§ and the corresponding
corrections to the Maslov indices. Note that the two terms above arise from a saddle-point
approximation to the integral in (2) at the stationary poisigs= 0 and¢g = =, respectively.
The action shifts and amplitudes in (5) will in general be correct only in the small-perturbation
limit.

We want to find a uniform approximation fé8 >> & that reaches the correct Gutzwiller
trace formula for the pair of isolated orbits

SgG = Au CO&SM/E—O'MT[/Z)"'AS COiSS/E—O‘ST[/Z) (6)
where the indices andu refer to the stable and unstable orbits, respectively. We first define
the following quantities:

A=3A+A)  AA=3(A—A)  S=3(S+S) AS=38.-5) (7)
O=S/h—-¢& & = 3(0, +0;) = 0. (8)

We now make the following ansatz for the uniform approximation, which consists of expanding
the productA (¢) 7 (¢) up to two terms with suitably chosen coefficients:

_ e 1 (7 - i
8gu = /21 |AS| /R Re{é‘l’z— (A + AA cosg)ertscosd) d¢}. 9)
T Jo
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For small perturbationsAS ~ &S, and therefore (9) will by construction lead to the correct
symmetric limit (4), since the divergence of the Gutzwiller amplitudes in this limit is given
by the first factor in equation (5). On the other hand, the coefficients in parentheses under the
integral in (9) have been chosen such that in the asymptotic |likdit >> &, the stationary-
phase evaluation will lead to the amplituddst AA which are precisely the Gutzwiller
amplitudesA, andA;, respectively, and thus give the form (6).

The integration in (9) can be done analytically, using

27
1 f d¢ cospe* % = iJy(x) (10)
2 0

and leads to the Tomsovic—Grinberg—UlImo (TGU) uniform approximation [19], inthe compact
form given by Sieber [9], for the contribution of a pair of symmetry-broken isolated orbits to
the trace formula:

8gu = /2 |AS|/h{AJo(AS/R) cog D) — AAJL(AS/R) sin(P)}. (11)

Note that this formula holds for all generic non-integrable systems in two dimensions that
arise from an integrable system with(1) symmetry through a symmetry-breaking term in

the Hamiltonian that is governed by a continuous parameter. Particular examples are two-
dimensional billiards obtained by deforming the circular billiard. The nature of the deformation
parameter generally plays no role. The only assumption made is that the original orbit families
(i.e. polygons in the case of the circular billiard) are broken into pairs of stable and unstable
isolated orbits. The modification that becomes necessary when extra degeneracies due to
discrete symmetries are present is trivial and will be dealt with explicitly in the examples
discussed below. The breaking into orbit pairs is the most frequent situation. Exceptions
occur, e.g., in billiards with octupole or hexadecapole deformations, where the boundary in
polar coordinates is given by0) = R[1 + ¢, P,(cost)] with £ = 3 or 4. There the diameter

orbit family breaks up into more than two isolated librating orbits (not counting discrete
degeneracies) [25]. These have to be treated with different (and more complicated) uniform
approximations.

We also note that the deformation away from the integrable case should be small enough
that no bifurcation of the stable isolated orbits has taken place or is about to arise. Near the
bifurcation points, the known uniform approximations apply [7—9] which we shall not discuss
here.

3. Uniform approximations for SU(2) breaking

No uniform approximation has, to our knowledge, been derived so far for systems with higher
thanU (1) symmetry. In the following, we shall do so for two systems obtained by breaking
theSU(2) symmetry of the two-dimensional harmonic oscillator. We shall follow the heuristic
way of deriving the uniform approximation described in the previous section, starting from
the perturbative limit which is treated here using the approach of Creagh [14].

For isotropic and anisotropic harmonic oscillators in any dimension, analytical trace
formulae are known which converge to the exact quantum-mechanical sum of delta functions
[4,26]. For the two-dimensional isotropic case, the oscillating part of the level density is

s rSo 2E 2nE
Sgo = AO COS(T> AQ = = So = —. (12)
; h (hw)? w

(Note that the smooth Thomas—Fermi part is givenAgy2.) As pointed out in [14], the
continuous degeneracy of the classical periodic orbits in this system can be described by
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integration of the surface elemei®2 = sing dg dy of a unit sphere:

2 T
i dy/ singdg = 1. (13)

4 0 0

As aresult of theSU (2) symmetry, the actiofy is independent of the angl@sandy . In the
presence of a small perturbation, the periodic orbits will be distorted, resulting in an action
shift§.S that in general will depend ofiandy . Explicit ways of calculating S (8, y) starting

from a Hamiltonian of the form (1) are given in [14]. For small values of the perturbation
parametek, the main effects governing the level density will come from the action shift in
the phase of the trace formula, whereas the unperturbed ampisiden be retained. The
perturbative trace formula for symmetry breaking then reads as

88 pert = AoRe{ ZM(rx)ei’S"/h}. (14)
r=1

Here the modulation factov1 (x) (which in general is complex) is given by the average of the

phase shift, taken over the originally degenerate periodic orbit family,

21 b g _
M(x) = 4i / dy / sing dg €*S@#-n/k (15)
7T Jo 0

andr is the repetition number. The dimensionless quantityproportional ta: and inversely
proportional toz, and depends on some power of the endtgyore — 0 and hence — 0,

we havesS — 0 so thatM — 1, and the unperturbed trace formula (12) is recovered.
The repetition number in (14) cannot be summed up to arbitrarily high values, since the
argument-x must remain of order unity or smaller for the perturbation approach to be valid.
Hence, the maximum valug, must be chosen such thatx < 1 for given values o€ andE.

This excludes in general the possibility of quantizing the system through the trace formula in
this approach. However, we shall be interested only in the low-frequency components of the
oscillating level density, i.e. in its gross-shell structure that is governed by the shortest periodic
orbits and their first few repetitions [4, 5].

Our main task now is to generalize the modulation factor (15) in such a way that the trace
formula (14) goes over to the Gutzwiller formula [1] for isolated orbits in the limit of large
perturbations that fully break the symmetry, whereas the limit(0) = 1 is preserved. If
we succeed in finding such a generalization, it will smoothly interpolate between the exact
trace formula (12) for the harmonic oscillator and the Gutzwiller formula for the symmetry-
broken limit, and hence be a suitable uniform approximation. Note that equation (14) with
(15) is exactly of the same form as equation (2) for th€l) case, except that we now
have a two-fold integral. We can therefore take the same course of action to find a uniform
approximation that has the above two limits: (i) evaluate the asymptotic amplitudes for large
values ofx (i.e. for largee), (i) map the exact action shiS onto the form obtained from
perturbation considerations (but with freely adjustable parameters), (iii) include under the
integral a parametrized expression of the same form for the product of the amplitude function
A and the Jacobiayr of the mapping function, and (iv) adjust all the parameters such that in
the asymptotic limit of larger the correct Gutzwiller amplitudes and actions of the isolated
orbits are obtained, while the unperturbed limit (12) is keptfet O.

This procedure is very similar in spirit to that used by Schomerus and Sieber in their
uniform treatment of many types of bifurcations [8]. However, instead of starting from a
phase-space representation of the trace formula and expanding the action in normal forms,
we use the group integral representation of the (unperturbed) trace formula developed by
Creagh and Littlejohn [6]. The latter directly exploits the properties of the symmetry group
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characteristic of the systeiy; it has been used as a starting point for the perturbative trace
formula of Creagh [14], as shown above in equations (14), (15).

Different from theU (1) case (with the exceptions mentioned at the end of the previous
section), the explicit results which we obtain do depend on the explicit form of the Hamiltonian
Hi. On the other hand, one of the results (that for the stand@mbht-Heiles potential)
turns out to also apply to a three-dimensional cavity with small axially-symmetric quadrupole
deformations. This is due to the close relation betweers#é) and theS O(3) symmetry
that is broken in the latter case. We will discuss this system in section 4.

3.1. The quartic l@non—Heiles potential

We first investigate the quarticéton—Heiles (HH4) potential in two dimensions, given in
polar coordinates by

1
V(r.0) = S’ - %r4 cog49) (16)

which has recently been investigated [18] in the framework of the semiclassical perturbation
theory described above. The limit= 0is a harmonic oscillator with th&l/ (2) symmetry. The
anharmonic term makes the system non-integrable with mixed classical dynamics. It retains
a discrete four-fold rotational symmetry with four saddle points at the engtgy: w*/4c,

through which the particle can escape. The shortest periodic orbits in this system are two pairs
of straight-line librating orbits (named;fand A in [18]) and a circulating orbit (hamed C).

As in the standard cubic @&hon—Heiles (HH) potential [18, 27, 28], the system is scaled with

« and its dynamics can be described in terms of one continuous parameter, the scaled energy
e defined by

e=E/E* = 4aE /0" (17)
The actions of the periodic orbits are changed in first order of the perturbation by a shift
_ — 3
881 = hx(sir® Bcos y — cog p) hix = 503—2(3. (18)

Then, the perturbative modulation factdt(x) in (15) becomes (witlh = cospg)

1 2 ” o
M) = 4_/ dy / sinBdp elx(smzﬂcos2 y—coZ B)
T Jo 0

1
= |,
An alternative expression of this is obtained by rotating the unit sphere about annadgle
along the 2 axis:

27 1 ) ) )
d)/ / du eI)([(lfu ycod y—u ] (19)
0

.1 1 ) 1 1 20)
€, = ——e€1 — —=¢€ €, = € €, = —€ —€
1 \/i 1 «/E 3 2 2 3 \/i 1 «/E 3
which leads to
1 2 T o
M(x) = —/ d)// sinp dp g sin@ cosy (21)
4 0 0
This integral can be performed analytically (see [18]) and yields
T X X
M(x) = Z_ﬁj_l/4 (E) J1ja (E) . (22)

The asymptotic expansion of the Bessel functigpée) for largex leads to three terms which
we label according to the names of the periodic orbits:

M(x) ~ M (x) + M, (x) + Ma, (x) (x>1) (23)
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with
clx) = 2 = Ac 2
Mgy, (x) = 1 cod+tx —w/2) = A, ~ 0 24
A1 2{ A1 2\/_ ( )
Mgy (x) = CoOS—x +7/2) = A4 ~ 0 .
Az( ) 2[ 3 / ) Az 2[

The first term corresponds to the loop orbit C, the second and third terms to straight-line
libration orbits A and Ay, respectively; each of them has a discrete degeneracy of two which
is included in the amplitudes. These are [18] the only periodic orbits with periods of order
To = 2 /w up to energieg < 0.85. The forms on the left-hand side of equation (24) contain
the exact Maslov indicesc = 0, 04, = +1, ando,, = —1 of the isolated orbits and, with
equation (12), yield the asymptotic amplitudes of the trace formula shown on the right-hand
side of equation (24). For small these amplitudes have been shown in [18] to reproduce
numerically well the diverging Gutzwiller amplitudes of the isolated periodic orbits. Note that
the action shifts predicted at the first order of the perturbation theory are zero for the orbit C
and+7x for the orbits A and A, respectively. This can be checked numerically for all orbits,
as well as analytically for the orbits;fand A. The actions of the latter, being straight-line
one-dimensional integrals, can be expressed analytically in terms of complete elliptic integrals
(see the appendix) and then be Taylor expanded in powersTdfe result is

_ 3 3 2, 1155 3,
Sa, = So(l+ e+ g55e” + ggegee +-00)

3 35 2 1155 3 (25)
Sa, = So(L— 3¢ + 752" — gésae® * )

which confirms the first-order action shiftsix given in equation (18), (24).

For the following, it is important to trace back the asymptotic forms (24) to singular
points of the integral (19). For this, we first evaluate the asymptotic form of tinéegral.
The stationary point at = 0 yields a term~1/./x, and the end point at = 1 yields a term
~1/x. The latter, after an exact integration overgives the contribution\ 4,(x). They
integral over the first term has four stationary points; saddle-point integratipr=ad andn=
yields the contributionM 4, (x), and aty = =/2 and 3r/2 it yields the contributionM ¢ (x).
In summary, we get the periodic orbit contributions asymptotically as follows:

orbit A, : fromu =1 (anyy)
orbitA; : fromu =0 y = 0 andr (26)
orbitC: fromu =0 y =m/2and 3r/2.

We now construct a uniform approximation which for laxggelds the correct asymptotic
Gutzwiller trace formula with the contributions from the three leading isolated orhjt&A
and C. For describing the gross-shell structure of the level density, it is sufficient to include
only the lowest few harmonicst, i.e. the first few repetitiorsf the primitive orbits, in the
trace formula. In the following, we shall only give the resultsfes 1; higher repetitions can
be included according to equation (14). Hence, the Gutzwiller limit is written as

SA b4 SA b4 SC T
886 = Aa, cos(T1 - GAlE) + Ay, cos(T2 - aA2§> +Ac cos(f - 0C5> N )

This limit can be imposed by including under the integral (19) the product of amplitude
functionA(u, y) times Jacobiafy (u, y) inthe same form as in the exponent, but with different

t A more consistent truncation of the trace formula, followed below, is achieved by Gaussian smoothing over a small
energy range, resulting in the amplitudes multiplied by exponential damping factors; see [28] for details. These
exponential factors are included in the amplitudes, A4,, andA¢ and their combinations defined below.
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parameters:
1 [7 1 .

M, (x) = —/ dy/ dy dxlA-u?) cos y—u?]
2 Jo 0

xAé{\/éAAzu2+ (1 — u?)[V2A,4, o8y + Acsin? y]}. (28)
0

Note that the coefficients in the second line are precisely the inverses of the asymptotic
amplitudes given in (24). In this way, the approximation (28) leads by construction to the
Gutzwiller limit (27) for largex, whereas forx — 0 the diverging Gutzwiller amplitudes
exactly cancel altogether and,, — 1, as required.

The integrals occurring in (28) can all be performed analytically. For the integral appearing
as the coefficient o, we note thae2 = sin® 8 sir y is invariant under the rotation (20), so
that we can replace the phase in the exponent by that appearing in equation (21). Then, using
the same transformations as in [18] for obtaining the form (22) of the perturbative modulation
factor, and exploiting some recurrence relations amongst the Bessel funktiainswe obtain

1 21
27 Jo

dy - ! /ﬂ sinB dB sir? B sin? y e Sin@p) cosy
o
4f [J 1/4( ) J1y4 (;) —J_ 31 <%) J3ya (%)] . (29)

The other two integrals can be found first by taking the derivative of equation (19) with respect
to x, and second by integrating the terms proportionakdn (28) overu by parts, and
finally by taking suitable linear combinations of the results of these two operations. The final
expression is

M, (x) = %[ACM_@ +V2A s Mo (x) — IV2A Ay M ()] (30)
0
where
_ A A Ay — A
i, = (%) AA, = (%> (31)
and

Mi(x) = f/i [J_1/4(2) J1/4(2) + J_3/4(2> J34 (;)]
M0 ==17% (714 () Jsia(5) + 9 (3) 4o (3) ]

The last step now is to insert the modulation factor (30) into equation (14) and to replace
the unperturbed actiofy in the phase of the first term of (30) I§¢, and for the other two
terms by the average action of the orbitsS,, andS,,, while the perturbative action shift
is redefined as their differenceS,

hix = ASy = 3(Sa, — Sa,) Sa = 3(Sa, + Sa,). (33)
By these replacements, we ensure that the phases in the asymptotic level density (27) contain
the correct numerical actions of the isolated orbits.
The final form of the uniform level density for the HH4 potential (including only the
primitive orbits, i.er = 1) is then:
Sgu = (2AS,/R)Re(eFS Ac M_(ASA/R)
V26 M [A Mo (ASy/R) — IAALM (AS,/P]}
= (RASs/M){AcM_(AS4/h) cosSc/h)
+V2[As M (ASa /) COSSA/R) + AAAM (S /B) SINSA/P)])- (34)

(32)
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Figure 1. Oscillating part of level density of the HH4 potential & 0.0064), averaged over a
rangey = 0.6, versus energ¥ (units: hw). Solid lines: quantum-mechanical results. Dashed
lines: semiclassical approximations (with = 1). Bottom: Gutzwiller trace formula (diverging

at small energies); middle: perturbative trace formula by Creagh (failing at large energies); top:
present uniform approximation (working at all energies).

As in the case of the TGU uniform approximation discussed in section 2, this formula only
holds as long as no bifurcations of the stable isolated orbits occur. For the primitive orbits of
the HH4 system, this does not happen up te 0.85, where the primitive orbit Aundergoes

an isochronous bifurcation. In the numerical results shown below, we have smoothed the
Gutzwiller amplitude of this orbit (see [18] for details) in order to simulate a better treatment
of this bifurcation by the corresponding uniform approximation [8].

In figure 1 we show a numerical compilation of the three semiclassical approximations
to the level densityg discussed here (dashed lines) and compare them with the quantum-
mechanical one (solid lines). In all cases, Gaussian averaging over the éhefjya range
y = 0.6hw has been applied. This damps the amplitudes strongly enough so that only the
primitive orbits ¢ = 1) need be kept in the semiclassical approaches. At the bottom of this
figure, the Gutzwiller result (27) for the isolated orbits is shown. It gives an excellentagreement
with the quantum result foE > 10hw, even up tee ~ 1 (the saddle energy 8* ~ 3%w
for the caser = 0.0064 chosen here). For small energies, it diverges due to the approaching
SU(2) symmetry limit. In the middle of the figure, the perturbative result [18] is shown. It
reproduces the quantum result upEo~ 13hw, thus catching the essential feature of the
symmetry breaking. (Note that & ~ 13hw we havex ~ 3, showing that the perturbative
approach may also be used for valuesxasomewhat larger than unity, cf [14, 18].) For
E > 14hw the anharmonicity is, however, too large for perturbation theory to apply. Finally,
the top part of figure 1 shows the present uniform approximation that reproduces the quantum
result at all energies.

Infigure 2 we compare the results of the present uniform approximation (dashed lines) with
the quantum results (solid lines) for two different values of the anharmonicity paramedter
the two upper panels, the same smoothing wjdth 0.6k was used as in the previous figure
and only the primitive orbitsr(= 1) A;, A and C were included. In the two lower panels,
we have used a smaller smoothing wigttk= 0.252«» and included the second repetitions (i.e.
rn = 2) of the three orbits as well. Now a more detailed fine structure of the level spectrum is
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Figure 2. Oscillating part of level density of the HH4 potential versus enefggunits: hw).

Solid lines: quantum-mechanical results. Dashed lines: semiclassical results with present uniform
approximation. Left sidex = 0.0036 (£* ~ 6% w), right side: « = 0.0064 E* ~ 3%w).

Upper part:y = 0.6 andr,, = 1, lower part:y = 0.25 andr,, = 2.

resolved; even this is well reproduced by the semiclassical approximation. Only in the regions
corresponding te = E/E* > 0.8 (E 2 31lhw), can some small differences be seen which

are explained by the fact that at these energies, new orbits with actions comparable to those of
the included orbits witlh = 2 exist (after period-doubling bifurcations of the orbits C anjl A
which we have not included. Their inclusion would necessitate a proper uniform treatment of
the corresponding bifurcations, which is outside the scope of this paper.

In the actual computation of the uniform trace formula for small eneegieancellations
between the diverging Gutzwiller amplitudes take place. This requires their rather accurate
numerical determination. For practical purposes, it is advisable to take advantage of the fact
that for sufficiently small arguments= AS, /i, the result (34) goes over into the perturbative
trace formula (14) with the modulation factor (22) which is numerically much more robust.
We found that one may switch between the two formulae for valuesSlx < 2.5 without
visibly changing the results shown above.

3.2. The standard Ehon—Heiles potential

We will now investigate the original #hon—Heiles (HH) potential [27], given in polar
coordinates by

1
V(r.0) = Zo’r? - %r%os(se). (35)

The three shortest isolated orbits in this potential, which have been shown [28] to govern the
beating gross-shell structure in the level density of this system, are a straight-line librating orbit
A, a curved librating orbit B, and a circulating orbit C (similar to that in the HH4 potential).

Orbits A and B have a discrete degeneracy of three, due to the three-fold discrete rotational
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symmetry of the potential (35), and the orbit C is two-fold degenerate due to time reversal
symmetry.

Because of the odd power of the anharmonic term in (35), the first-order perturbation
result is zero both classically and quantum-mechanically. In second-order perturbation, the
action shifts S due to the anharmonicity is given [18] by

88, =hx(5—7cog B)/6 (36)
with
~ S0 E _ So . o

Here E* is the saddle energy for the potential (35), afads the action of the unperturbed
harmonic oscillator given in (12). The perturbative modulation fagitx) becomes

1
M(x) = 1 / dQ e*6-74/6 — f dy g¥G-7/8, (38)
47 0
This integral can be expressed analytically in terms of the Fresnel funationsand S(x)
(we use the convention of Abramowitz and Stegun [29]):

1 ) 7
M(x) = 5'”65[C<s>—|5(s)] £= % (39)

Using the asymptotic expansion of the Fresnel functions for large arguments,

1 1 .
CE ~5+ = sin(r&?/2)

1 1 , (40)
SE) ~ 5~ %003755 /2)
we get the asymptotic result
37 _ 3 _
8g ~ Ao COSSo/h +5x/6 — /4) + — AgcOS(So/h — x/3 +7/2) (41)
14)x| 7|x|

which is again only correct for sufficiently small values of the scaled enesgythatx < 1.
Note that (41) predicts the action shiftSc and the average action shiftS, s to be

ASc = S¢ — So = —hx/3 ASxp = Sap — So = 5hx /6 Sap = 3(S4 + Sp).
(42)

This is numerically well fulfilled at lower energies. The expansion (41) is also obtained from
the asymptotic analysis of the integral (38), whereby the first term comes from the stationary
point atu = 0 and the second term is the end-point correction feore= 1. The latter
corresponds to the C orbit in the HH potential with the correct Maslov indexdd 8} —1.

Its amplitude is thus predicted in the second-order perturbation theory as

p2_ B6E 36 1
Ac” = 7(hw)?x  Trhw e (43)
which was shown in [18] to describe the numerical Gutzwiller amplitddewell, not only
for smalle where it diverges, but also up to energées 1. The first term in (41) corresponds
to the sum of orbits A and B which, however, are still degenerate on the girel§0, 2) at
the second order of the perturbation expansion and therefore have an asymptotic amplitude too
large by a factor 1v/A. These orbits are broken up only at fourth order, with an action shift

8Sa=—hysin®gcos3y)  y=cse’. (44)
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Including this into the phase of the modulation factor, we get

' ix(5—7u?)/6 1 a iv(1—u2)3/2 3
M(x,y) = / du ex =%/ 2—/ dy g Iy(A—u)¥"cos3y)
0 T Jo

1
- / du €78 ol y(L — u?)*7?]. (45)
0

In the asymptotic expansion of this modulation factor, the Bessel function modifies only the
contribution from the stationary point at= 0, leading to

i lAOJO(y) cogSo/l +5x/6 — 7 /4) + %Ao cosSo/h — x/3+7/2). (46)
Upon further expansion ofy(y) for y > 1, this yields the amplitudes and the correct Maslov
phases [18b,4 = 1 ando = 0 of the (now isolated) orbits A and B. The amplitudes, which
are equal at this order of the perturbation theory, go likg[ky| and thus have the same power

of h asAg’z. The actions of the orbits A and B are shifted from the average \&lyeoy an
amountthy, respectively. For the orbit A, this can again be checked by analytical integration
(see the appendix) and Taylor expansion of its period. The action becomes

o _g(1+5,, 385 , 85085 ,
A =20 72° " 15555 " 6718464

The first correction term is the average action shifty 5 (42), obtained for both orbits Aand B
at second order of the perturbation theory; the next term gives the vaty@oéquation (44).
With this, the fourth-order prediction of the average amplitude of orbits A and B becomes

216 1
AP = / 48
Adp = (ha))2 7|xy ~ Tnho 5 e3/2 (48)

(Note that this amplitude contains the degeneracy factor 3 of the orbits A and B mentioned
above,; it is related to the factor 3 in the argument of the cos function in (44). Simi@fﬁ/,
(43) contains the time-reversal factor 2 of the orbit C, which is related to the two end-point
corrections, coming from the integral in (38) which originally runs from-1 to +1, each
giving one half of the second term in (41).)

We now redefine the quantitiesandy in terms of the true actions of the isolated periodic
orbits

5g ~

(47)

hy =88 = 3(S4 — Sp) Lhx = AS = 3(Sa + Sp) — Sc (49)
and introduce the combinations of the Gutzwiller amplitudes
Axp = 5(As+ Ap) AAsp = 3(As — Ap). (50)

The uniform approximation to the modulation factor is then

1 ! (i/R)AS(5/7—u?) 1 2 —(i/h)8S (1-u?)%2 cog3y)
M, =— du e — dy e ¥
Ao Jo 2

2|AS 4 AS 27|88
x {MAC u’+ |h | n| [AAB + AA,p COY3y)]

- (1—u?)
(51)

The second line above is again the parametrized praducty)J (u, y), with coefficients
chosen such that asymptotically for large& andssS, the Gutzwiller limit

886 = Aa COiSA/E— O’AT[/Z) +Ap COXSB/E— UB7T/2) +Ac COiSC/E— O’Cn/Z) (52)
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is reached. (The degeneracy factors due to discrete symmetries discussed above are again
included in the amplitudes.) In the limkS = §S = 0, on the other handM, (51) still
reduces to unity as it should.

The two-dimensional integrals in (51) cannot be done analytically here. It turns out,
however, that we can approximate them without violating the above two limitst. For that we
note that the first term (corresponding to orbit C) asymptotically gets contributions only from
u =~ 1; we may therefore put = 1 in the exponent of th¢ integral which then becomes
unity. The second term of (51), corresponding to orbits A and B, asymptotically only gets
contributions fromu ~ 0. Puttingu = 0 in the exponents of thg integrals leads to Bessel
functions Jp and J; as in the TGU formula (11). The remainingintegrals can now be
expressed again in terms of the Fresnel functions after some partial integrations; therefore we
keep only the leading-order terms/inWe then arrive at the uniform trace formula for the HH
potential, including the contributions from the three primitive orbits A, B, and C,

Sc T 258
8g, = Accos| =+—=)— . [|—
Su=Ac <h 2) 'AS‘

x | AagJi 85 cos SC+” AAapl 85 sin SC+”
ABYJO E E 2 ABJ1 E E 2
" \/2|_AS| \/471k3S|
hr h
- S SAB 88 . SAB
X[ "B""(h)cos(h) ABJl(h)S'”(h>]
\/2|AS| \/4n|5$|
+S — _
hm h
_ 8S\ . [ Sap 8S Sag
Aaplol = |sin| — |+ AA 1| —= | cos| — | |. 53
X[A”(h) <h> A“(h) (h)] (53)

In the low-energy limitAS — 0,85 — 0, the second line of (53) cancels the orbit C term in
the first line, the fourth line vanishes, and the third line yields the HO trace formula (12).

At energies where the C orbit is well isolated and separated from the A and B orbits
(AS > h) but the splitting of A and B is still smalls¢§ < &), we can use the asymptotic
forms (40) of the Fresnel functions. Hereby the second terms from (40) combine to cancel the
second line in (53), whereas the leading terms combine into

5o, — Accos( €+ )+ [ZISI 2 0 (25) cos Sap _ 7
8u = Ac 7 2 7 ABJO 7 7 2

S . SAB b g
AAABJ]_(E)Sln( 7 4)] x>1 (54)
so that the second line contains nothing but the TGU approach to orbits A and B, kept separate
from the isolated orbit C contribution.

In figure 3 we show the numerical results obtained with the uniform approximation (53)
usingr,, = 2 (dashed line), compared with the quantum-mechanical result (solid line) for the
HH potential withe = 0.04 and a Gaussian averaging with wigth= 0.252w. The agreement
is perfect for all energies up o~ 0.73. The differences seen fer> 0.73 are due to some

T These approximations correspond, in fact, to neglecting only higher-order terma&/mhave checked by numerical
integration that these do not affect the results discussed below.
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Figure 3. Oscillating part of level density of the HH potential & 0.04), Gaussian averaged over
a rangey = 0.25, versus scaled energy Solid line: quantum-mechanical result; dashed line:
semiclassical result in the present uniform approximation wjth= 2. (Units: hw.)

missing orbits which arise after period-doubling bifurcations of the primitive orbits A and C,
and perhaps to the isochronous bifurcation of the A orbit that occurs orly~at0.97 but
may make itself felt in the amplitudé 4 already at smaller energies. (Note that, in contrast
to the HH4 case above, we have not smoothed this amplitude here.) All these bifurcations
can be treated with the uniform approximations developed in [8]. Part of the disagreement for
e 2 0.75is also due to inaccuracies in the diagonalization of the quantum HH Hamiltonian in
a finite basis [28].

Asinthe case ofthe HH4 potential, t& (2) limitis reached in the uniform approximation
(53) through a subtle cancellation of divergences in the Gutzwiller amplitudes. Numerically,
the most robust procedure is to use the perturbative result (39) for values &AS/7h up
to~1.5— 2.5, and then to switch to the uniform approximation.

4. Axial quadrupole deformations of a spherical cavity

We finally discuss three-dimensional cavities with axially symmetric quadrupole deformations
that can be treated with the uniform approximation developed above for the HH potential. The
boundary of the cavities is in polar coordinates given by

R0, ¢) = Ro[1 + € P>(c0sH)] (55)

where P>(x) = (3x? — 1)/2 is the second Legendre polynomial. The periodic orbits in a
spherical cavity with ideally reflecting walls have been discussed extensively by Balian and
Bloch [2], and an analytical trace formula has been given by these authors for its level density
which we again write as in equation (4). The three-dimensional degeneracy of the polygonal
orbits with N > 3 corners, due to the€0(3) symmetry of the sphere, can be described by the
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three Euler anglesx( ﬁ y), and the corresponding group integral is [6, 14]

@ dy/ sing dﬂ da =1 (56)

We choose the Euler angles such thas the angle between the normal to the plane of motion
of an orbit family and the-axis,y describes the orientation of a single orbit within this plane
(i.e. within the family), andx describes rotations of the orbit plane around zkexis. As

long as we restrict the deformations of the cavity to be axially symmetric (aroundakis),

the action of the perturbed orbits will not depend on the angld-or small deformations,

the contribution of each periodic orbit family to the spherical trace formula can thus again be
written in the perturbative approach as

8gpers = Re{M(x, y)g$o/i—oor/2} (57)
where the modulation factor is
1 2 1 )
M(x,y) = — / dy f dy €507y, (58)
27'[ 0 0

Herex andy are parameters depending on the deformatjdhe energy, and the specific orbit
type. When bothx andy are non-zero, the orbit families are broken into singly degenerate
families of orbits lying in planes. These come in two types. One type is lying in planes
perpendicular to the symmetry axis (coming from the end-point correctior=at); we will
henceforth call them thequatorial orbits They are identical to the orbits in a two-dimensional
circular billiard. The other type of orbits lie in planes that contain the symmetry axis (coming
from the stationary point = 0); we will call these th@lanar orbits They are isolated in their
plane of motion and will, for small deformations, come in pairs of stable and unstable orbits.
With the exception of a completely isolated linear orbit that oscillates along the symmetry
axis, all the equatorial and planar orbits have the continuous one-parameter degeneracy due to
rotation of the plane of motion around the symmetry axis.

We see, therefore, that the situation is completely analogous to that of the HH potential
discussed in the previous section: orbit C corresponds to the equatorial orbit families (with
two orientations connected to time reversal), and orbits A and B to the pairs of planar
orbits. The only difference is that, since we start here from a three-dimensional system
with SO(3) symmetry, the breaking of two degrees of degeneracy leaves the orbits in singly
degenerate families. Furthermore, the planar orbits do not have the discrete three-fold rotational
degeneracy as the A and B orbits in the HH potential, but occasional two-fold degeneracies
due to the symmetry of reflection at the equator plane. We can therefore take over the previous
results with little effort. We shall first discuss the family of polygon orbits vt 3 corners,
and come to the diameter orbit¥ (= 2) later.

4.1. Polygon orbits withV > 3

The families of polygon orbits in the sphere have, in principle, the $Gl(3) symmetry.
However, when we limit the deformation of the cavity to axially-symmetric shapes, the action
shift depends only on two of the Euler angles, so that the symmetry breaking problem is the
same as in the HH potential considered above. In first-order perturbation theory [15], the
action shift depends only on the angle

5S; = —AS Py(cosB)  AS = gso. (59)

This corresponds to the fact that a quadrupole deformation to lowest ordés iidentical
to that of an axially symmetric ellipsoid, which is an integrable system and thus has an extra
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symmetry with two-fold degenerate orbit families (i.e., polygons wiitte: 3 fitting into the
ellipse that gives the boundary of the plane of motion). As for orbits A and B of the HH
system, this symmetry will be broken only at a higher order in the perturbation expansion; in
the present case we expect this to happen at the third ordewitth an action shift

883 = —8S,; Sin® B cogny) (60)
wheren counts the discrete symmetries of the planar orbits and will again be absorbed into
the Gutzwiller amplitudes. With this, the modulation factor becomes

1 2
. 1 )
M(x, y) = / @ -32 f dy g (-uh* cosny) (61)
0 T Jo

with ix = AS andhy = §S,,. For smallx andy, the action shifts will be
=184 — So=—x=—hAS 62)
(w=0):8,—8 =+x/2=+hAS/2
with
Spi = 3(S4 +55) St =8, +8Sy S5 = S8p —8Sp. (63)
The modulation factor (61) has exactly the same form as that of the HH case (45). However,
different from there,x andy can have both signs, depending on the sigm.ofTherefore,
switching from prolate deformationg (> 0), which is analogous to the HH situation, to
oblate deformations:(< 0), one has to take the complex conjugate of the modulation factor
before using itin (57). This only affects some of the signs in the final results; in the following
formulae the upper signs correspond to the prolate case and the lower signs to the oblate case.
The final trace formula for one type of orbit (with fixed numbér> 3 of corners, and
without including their higher repetitions) becomes

8gN>9 = A, cosd,, 23511 5 Jo (22 cosdn, — an,n (22 sine
8u |AS| plJ0 7 eq plJ1l h eq

2|AS 4 16S 58S éS

+C (\/ LTE |)\/ nll_ | [A,,IJO < A )coscbpl AA, L ( 7 >S|nd>p;}
2|AS 4|88 N 88

:l:S<\/ |n%|)\/ 7T|E ||: zJo(h)SlnCD1+AA 1J1<h>COSCI>p1:|

(64)
where we have re-defined
Shx = AS = Sy — Seq iy =88 = 3(Sp = Sp)
Seq T - Spi T (65)
q)eq = 7 —O'qu (Dp] = 7 O'()E.
and the combinations of Gutzwiller amplitudes (including discrete degeneracy factors)
=3(AY +A%) AAp = 3(AY =A%), (66)
The correct Maslov indices of the asymptotic orbits become
Og=00F1 6= 2(G“+U )_oo:I:1 ”Z_o +1. (67)

At moderately large deformations, the equatorial and planar orbits are sufficiently well
separated, so that we can take the limis| > %. The result (64) then simplifies to

27|6S| [ - S S
8gN>9 = A,, cosd,, + % [APZJO (f) cos( ;I 6,]1%)

(SS . S i _ T
— AA (7) sin (7” - 01,15>:| (68)
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which again contains the simple TGU formula applied to the planar orbits. At larger
deformations (but still before any bifurcations take place), we expand the abgéefop i
and obtain the Gutzwiller limit

58079 = A, cOSD,, + A" COSP", + A', COSD",. (69)

4.2. Diameter orbit§N = 2)

The diameter orbits = 2) in a spherical cavity have only a continuous degeneracy of two,
since rotation about themselves does not bring about any new orbit [2]. It is convenient to
re-define the Euler angles such thtadescribes the angle between the diameter orbit and
the z-axis. In first-order perturbation theory, the action shift of the diameter orbit due to a
guadrupole deformation (55) is then given by [15]

381 = €SoP2(CoSp). (70)

Hence the modulation factor for small deformations becomes
l .
M) = / dl €+ 3-D/2 (71)
0

with 2x = €Sy. Asymptotically, we get fromx = 0 the equator orbits which keep thg1)
degeneracy corresponding to rotation aboutztasis, and from the end point= 1 we find
the isolated diameter orbit along thexis. Their action shifts for smatl will be

Seq — So = —hx/2 Siso — So = +hx. (72)

The situation thus corresponds exactly to the case for the polygonal orbits, but witB

since there is no further splitting of the isolated diameter orbit, and with the roles of prolate and
oblate deformations interchanged. The uniform trace formula for the diameter contributions
is thus

- 7 2|AS| S 7
8gV=2 — [ A;,, — | —— A, | cos®;s, +V2A,, | C /2220 ) cos( 24 — 5=
8u zIAas| e a 7k 92

21AS|\ . (S. P
S < 7) Sin (7‘1 - GOE)} . (73)

Hereby we have re-defined

Siso
AS = Si50 — Seq D50 = 7 - aisag Oiso = 09 = 1. (74)
For|AS| > h, we get the Gutzwiller limit for the diameter orbits:
850" = A, COSD,, + Ajs, COSD;y, (75)
with
Se T 1
q)eq = # - Gqu Ocq = 00 F é (76)

In all the equations above, the upper and lower signs correspaif te O (prolate case) and
AS < 0 (oblate case), respectively.

Infigure 4 we show the oscillating pag (k) of the level density for a very small quadrupole
deformation ofe = 0.01, Gaussian-averaged ovewith a rangey = 0.6R~* and plotted
versus the wavenumbér= +/2mE /h. Note the pronounced ‘supershell’ oscillations that
are mainly a result of the interfering triangle and square orbits [2]. In the semiclassical
result (dashed line), periodic orbits with up % = 6 reflections were included in the
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Figure 4. Oscillating part of level density in an axially-symmetric quadrupole-deformed cavity
with deformatione = 0.01, Gaussian averaged ovewith a rangey = 0.6, versus wavelength

k (units: R~1). Solid line: quantum-mechanical result; dashed line: semiclassical result in the
present uniform approximation using equatorial and planar orbits with ip=+06 reflections.
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Figure 5. Same as figure 4, but for the deformatios- 0.1.

uniform approximation given by equations (64), (73); identical results are obtained at this
deformation in the perturbative approach. Both reproduce the quantum-mechanical result
(solid line) very well. For details concerning the calculation of the Gutzwiller amplitudes
for the equatorial and planar orbits in non-integrable axially deformed cavities, we refer to a
forthcoming publication [25]. In figure 5, we show the corresponding results at a quadrupole
deformation ok = 0.1 at which the supershell beating is already reduced [15].

The relative importance of the different orbits at these deformations can most easily be
analysed in the Fourier spectra of the oscillating level derdgit¥). Since billiard systems
exhibit scaling (i.e. the properties of the periodic orbits do not depend on energy), the Fourier
transform with respect té@ gives directly power spectra in which the peaks occur at the
lengths of the contributing periodic orbits. Figures 6 and 7 present the absolute values of
the Fourier transforms of the level densities shown in the above two figures. In figure 6, the
peaks corresponding to equatorial and planar orbits cannot be separated, since at the small
deformatione = 0.01 the spherical tori are hardly broken. Indeed, the perturbative result
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Figure 6. Fourier transform of the level densities shown in figure 4. The symbols indicate the
periodic orbits corresponding to the Fourier peaks. The deformatien Q.01) is so small here

that equatorial and planar orbits are not separated yet. The perturbation approach (short-dashed
line) gives practically identical results as the uniform approximation (long-dashed line) and the
gquantum mechanics (solid line).
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Figure 7. Fourier transform of the level densities shown in figure 5. At this deformatien(.1),

the equatorial orbits (symbols in heavy circles) are well separated from the planar orbits (symbols
in thin ovals). However, the pairs of isolated stable and unstable planar orbits are not separated yet,
as seen from the large peaks obtained with the Gutzwiller trace formula (thin-dashed line). The
tiny bump atL ~ 4.4 R corresponds to the unstable isolated diameter orbit along the symmetry
axis, whose Gutzwiller amplitude is smaller than all the others by a fa¢kgik R.

(short-dashed line) gives practically identical results as the uniform approximation (long-
dashed line); both agree very well with the quantum result. At the deformatier.1, the
equatorial and planar orbits are already well separated, as can be seen from figure 7, so that
the full uniform approximation (64) for the orbits withi > 3 can be replaced by the TGU
approximation given in equation (68). However, the separation of the stable and unstable planar
orbits is still very small. Therefore, the Gutzwiller trace formula dramatically overestimates
their combined amplitudes, as seen from the short-dashed line.
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5. Summary

We have derived uniform approximations for the semiclassical description of systems with
perturbedSU (2) andS O (3) symmetry. Different from the case of bifurcations, where uniform
approximations are most effectively derived from the expansion of the classical action in phase-
space into normal forms [8], we use the group integral representation of the unperturbed trace
formula [6] and the classical perturbation theory [14] as starting points for our development.

In terms of analytical trace formulae we can interpolate smoothly from the integrable
limits to the limits where their symmetries are broken and the asymptotic Gutzwiller trace
formulae for the leading periodic orbits are reached. In the two-dimensicerbid-Heiles
type potentials with brokeSU (2) symmetry, these orbits are isolated, whereas in the axially-
symmetric quadrupole-deformed cavities with broksf(3) symmetry, they retain a one-
dimensional degeneracy corresponding to the rotation about the symmetry axis. In all cases,
the few shortest periodic orbits that were considered could account quantitatively for the gross-
shell effects found in the coarse-grained quantum-mechanical level densities.

Unlike for the breaking of an orbit family witli/ (1) symmetry into pairs of stable and
unstable isolated orbits, for which case Tomsatial [19] have found the universal uniform
approximation given in equation (11), our present result§ {6§2) andS O (3) breaking are not
universal. This is due to more complicated scenarios for the breaking of rational tori that arise
when more degrees of freedom, or higher-dimensional degeneracies of the orbit families, are
involved. The two examples of the HH4 and HH potentials show how the symmetry breaking
can happen at different orders in the perturbation theory and lead to quite different modulation
factors; see equations (19) and (45) which were the starting point of our development. However,
due to the feasibility of the perturbation theory and the generality of the scheme for the uniform
approximation used in this study, our method can easily be also applied to other potentials and
different symmetries of the unperturbed system.
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Appendix. Analytical results for linear periodic orbits

For the test of numerical routines that solve equations of motion and determine the actions of
periodic orbits, it might be helpful to compare them with analytical results where available.
The straight-line librating periodic orbits in theeHon—Heiles potentials allow for an analytic
calculation of their actions or periods. We give the results and a brief sketch of their derivations.
A.1 TheA; and A, orbits in the HH4 potential

The potential
1o, o,y
V(r,0) = S0 = g7 cog49) (A1)

has two pairs of linear librating orbits: the Arbits oscillating along the- andy-axes ¢ = 0
ands/2), and the orbits Aoscillating along the diagonal8 & = /4 and 3r/4). We scale the
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potential with the factor AE* = 4a/w*, so that the equations for their classical turning points
are

e =2 x* (A2)

in terms of the scaled energy(17) and the scaled radial coordinate= r./o/w. The upper
and lower sign in (A2) holds for the orbits;fand A, respectively. The four solutions of
equation (A2) with the-’ sign are given bytx; and+x,, where

x=y1-vVi—e xx=y1+J/I—¢ (A3)

and+x; are the classical turning points of thg Arbits. Their action is then

Sa, = 8\/§E—* /Xl Vie—2x2+xHdx = 8~/§E—* /xl \/(xf — x?)(x5 — x?)dx (A4)
w Jo w Jo

which can be expressed in term of the complete elliptic integkdds) = F(x/2,t) and
E(t) = E(x/2, 1) in terms of the quantity

1-JV1-—e

2
_ (M) _—v-—¢
t_<Xz) 1+/I—¢ (A3)
The result is
Sa,(e) = 1%‘/2 %*\/1 +V1—e¢ [E(t) _J1-e K(t)] (e <1). (A6)

At e = 1 we get simplyS,, (1) = 16V2E*/(3w).
For the A orbits, the solutions of equation (A2) with the ‘+’ sign are given-hy; and
+ix,, where now,

x1=y~v1l+e—-1 xo=y~1l+e+1l (A?)

and=+x; are again the classical turning points. The action of themits is then

E* X1
Sa, = 82— f \/(xzz +x2)(x2 — x2) dx (A8)
@ Jo
which becomes
16 E*
Si(€) = = (1 +e)/4 [(1 +4/1 +e) K(k) — ZE(IC):I (A9)
3 w
in terms of the quantity
xf V1i+te—-1

K = — . Al10
Z+xd) - 2Jive (A10)

Taylor expansion of equations (A6), (A9) in powers ofleads to the result given in
equation (25).

A.2 The A orbit in the HH potential

The potential

1
V(r.0) = s’ - %r%os(se) (A11)

has linear librating orbits A oscillating along the symmetry axes=(0, 27/3 and 4/3).
We scale the potential with the factof A* = 6a?/w®, so that the equation for the classical
turning points is

e=3x%—2x° (A12)
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in terms of the scaled energy= E/E* and the scaled radial coordinate= ra/w?. The real
solutions for this cubic equation fer< 1 are, withx; < x2 < x3,
x1=3—cosn/3—¢/3) X2 =3 —Ccosm/3+¢/3) x3=3+C04¢/3) (Al13)
where

cosgp = 1 — 2e. (A14)
The action of the A orbit is then
5, = W3 / Vo= 32+ 230 = 4/6- / Vo Gz —00s —x) de

" " (A15)

but we could not find an analytical expression for this integral. Instead, we calculate the period
T4 =dS,/dE

X2
7~ Y8 / 1 d (A16)
o Jou Vx—x1)(2 —x)(x3—x)
which again can be expressed in terms of a complete elliptic integral by
N
T, =—— K 1 Al7
a(e) o Jaon (@) (e<D (A17)
where
0= (222). (A18)
X3 — X1

(Note thatT, diverges at = 1.) Expansion of (A17) in powers efand integrating over the
energyE leads to the result given in equation (47).
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